Heinz mean curvature estimates in warped product spaces M x e N

被引:0
|
作者
Salavessa, Isabel M. C. [1 ]
机构
[1] Univ Lisbon, Inst Super Tecn, Ctr Phys & Engn Adv Mat CeFEMA, Edificio Ciencia,Piso 3,Ave Rovisco Pais, P-1049001 Lisbon, Portugal
关键词
Heinz estimate; Mean curvature; Warped product; Isoperimetric inequality; Higher codimension; Calibration; EIGENVALUE COMPARISON-THEOREMS; MANIFOLDS; GRAPHS;
D O I
10.1007/s10455-017-9577-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
If a graph submanifold (x, f(x)) of a Riemannian warped product space is immersed with parallel mean curvature H, then we obtain a Heinz-type estimation of the mean curvature. Namely, on each compact domain D of M, holds, where and are the -weighted area and volume, respectively. In particular, if (M, g) has zero-weighted Cheeger constant, a concept recently introduced by Impera et al. (Height estimates for killing graphs. arXiv:1612.012571612.01257" TargetType=, 2016). This generalizes the known cases or . We also conclude minimality using a closed calibration, assuming is complete where , and for some constants , and , , , and holds when , where r(x) is the distance function on from some fixed point. Both results rely on expressing the squared norm of the mean curvature as a weighted divergence of a suitable vector field.
引用
收藏
页码:265 / 281
页数:17
相关论文
共 50 条
  • [21] Finsler warped product metrics with relatively isotropic mean Landsberg curvature
    Gabrani, Mehran
    Rezaei, Bahman
    Sevim, Esra Sengelen
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2024, 104 (3-4): : 315 - 327
  • [22] Heinz-type mean curvature estimates in Lorentz-Minkowski space
    Honda, Atsufumi
    Kawakami, Yu
    Koiso, Miyuki
    Tori, Syunsuke
    REVISTA MATEMATICA COMPLUTENSE, 2021, 34 (03): : 641 - 651
  • [23] WARPED PRODUCT EINSTEIN METRICS OVER SPACES WITH CONSTANT SCALAR CURVATURE
    He, Chenxu
    Petersen, Peter
    Wylie, William
    ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (01) : 159 - 189
  • [24] CYLINDRICAL ESTIMATES FOR MEAN CURVATURE FLOW IN HYPERBOLIC SPACES
    Ji, Zhengchao
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2021, 20 (03) : 1199 - 1211
  • [25] Heinz-type mean curvature estimates in Lorentz-Minkowski space
    Atsufumi Honda
    Yu Kawakami
    Miyuki Koiso
    Syunsuke Tori
    Revista Matemática Complutense, 2021, 34 : 641 - 651
  • [26] Convergence result and blow-up examples for the Guan-Li mean curvature flow on warped product spaces
    Vetois, Jerome
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2021, 29 (08) : 1917 - 1935
  • [27] EIGENVALUE ESTIMATES FOR SUBMANIFOLDS WITH LOCALLY BOUNDED MEAN CURVATURE IN N x R
    Bessa, G. Pacelli
    Costa, M. Silvana
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 137 (03) : 1093 - 1102
  • [28] On complete submanifolds with parallel mean curvature in product spaces
    Fetcu, Dorel
    Rosenberg, Harold
    REVISTA MATEMATICA IBEROAMERICANA, 2013, 29 (04) : 1283 - 1306
  • [29] Mean curvature flows of graphs sliding off to infinity in warped product manifolds
    Fujihara, Naotoshi
    DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 2024, 97
  • [30] Scalar curvature estimates of constant mean curvature hypersurfaces in locally symmetric spaces
    Eudes L. de Lima
    Henrique F. de Lima
    Fábio R. dos Santos
    Marco A. L. Velásquez
    São Paulo Journal of Mathematical Sciences, 2019, 13 : 320 - 341