Extended optimal preventive replacement policies with random working cycle

被引:38
|
作者
Shey-Huei, Sheu [1 ,2 ,3 ]
Tzu-Hsin, Liu [1 ]
Zhe-George, Zhang [4 ,5 ,6 ]
机构
[1] Asia Univ, Dept Business Adm, Taichung 413, Taiwan
[2] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung 404, Taiwan
[3] Natl Taiwan Univ Sci & Technol, Dept Ind Management, Taipei 106, Taiwan
[4] Sichuan Univ, Sch Business, Chengdu 610064, Sichuan, Peoples R China
[5] Western Washington Univ, Dept Decis Sci, Bellingham, WA 98225 USA
[6] Simon Fraser Univ, Beedie Sch Business, Burnaby, BC V5A 1S6, Canada
关键词
Minimal repair; Optimization; Preventive replacement first; Preventive replacement last; Random working time; CUMULATIVE DAMAGE MODELS; MINIMAL REPAIR COSTS; SYSTEM SUBJECT; MAINTENANCE POLICIES; OPTIMAL NUMBER; PERIODIC REPLACEMENT; GENERALIZED AGE; LAST; 1ST;
D O I
10.1016/j.ress.2019.03.036
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper investigates the preventive replacement policies for an operating system that works for projects at random times. The system is subject to shocks which arrive according to a non-homogeneous Poisson process. When a shock takes place, the system is either replaced by a new one (type 2 failure) or minimally repaired (type 1 failure). The decision to repair or replace the system depends on the number of shocks that have occurred since the last replacement. In this paper, we propose the following two preventive replacement models: (1) the system is preventively replaced before a type 2 failure at age T or at the completion of the Nth working projects or at the kth type 1 failure, whichever occurs last; (2) the system is preventively replaced before a type 2 failure at age T or at the completion of the Nth working projects or at the kth type 1 failure, whichever occurs first. For each model, the optimum preventive replacement schedule that minimizes the long term expected cost per unit time is theoretically presented. Finally, we offer a computational algorithm for determining the optimum replacement policies, and we give a numerical example to illustrate our proposed models. This study provides a general framework such that many existing models are the special cases of the proposed models.
引用
收藏
页码:398 / 415
页数:18
相关论文
共 50 条
  • [21] ON OPTIMAL REPLACEMENT POLICIES
    ASSAF, D
    LEVIKSON, B
    MANAGEMENT SCIENCE, 1982, 28 (11) : 1304 - 1312
  • [22] Optimal maintenance policies for cumulative damage models with random working times
    Zhao, Xufeng
    Nakamura, Syouji
    Nakagawa, Toshio
    JOURNAL OF QUALITY IN MAINTENANCE ENGINEERING, 2013, 19 (01) : 25 - +
  • [23] Asymptotic Replacement and Preventive Maintenance Policies
    Nakagawa, Toshio
    Zhao, Xufeng
    2011 INTERNATIONAL CONFERENCE ON QUALITY, RELIABILITY, RISK, MAINTENANCE, AND SAFETY ENGINEERING (ICQR2MSE), 2011, : 417 - 420
  • [24] Optimal replacement policies for a system based on a one-cycle criterion
    Sheu, Shey-Huei
    Tsai, Hsin-Nan
    Sheu, Uan-Yu
    Zhang, Zhe George
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2019, 191
  • [25] Random and Age Replacement Policies
    Chen, Mingchih
    Mizutani, Satoshi
    Nakagawa, Toshio
    15TH ISSAT INTERNATIONAL CONFERENCE ON RELIABILITY AND QUALITY IN DESIGN, PROCEEDINGS, 2009, : 343 - +
  • [26] RANDOM AND AGE REPLACEMENT POLICIES
    Chen, Mingchih
    Mizutani, Satoshi
    Nakagawa, Toshio
    INTERNATIONAL JOURNAL OF RELIABILITY QUALITY AND SAFETY ENGINEERING, 2010, 17 (01) : 27 - 39
  • [27] Over-time and over-level replacement policies with random working cycles
    Zhao, Xufeng
    Nakagawa, Toshio
    ANNALS OF OPERATIONS RESEARCH, 2016, 244 (01) : 103 - 116
  • [28] Over-time and over-level replacement policies with random working cycles
    Xufeng Zhao
    Toshio Nakagawa
    Annals of Operations Research, 2016, 244 : 103 - 116
  • [29] OPTIMAL REPLACEMENT AND MAINTENANCE POLICIES
    KING, RP
    INDUSTRIAL AND ENGINEERING CHEMISTRY, 1968, 60 (02): : 29 - &
  • [30] OPTIMAL REPLACEMENT AND BUILD POLICIES
    GEORGE, LL
    MAHLOOJI, H
    HU, PW
    PROCEEDINGS ANNUAL RELIABILITY AND MAINTAINABILITY SYMPOSIUM, 1979, (NSYM): : 147 - 152