Behavior of the maximum likelihood in quantum state tomography

被引:14
|
作者
Scholten, Travis L. [1 ,2 ]
Blume-Kohout, Robin [1 ,2 ]
机构
[1] Sandia Natl Labs, CCR, Livermore, CA 94550 USA
[2] Univ New Mexico, Ctr Quantum Informat & Control CQuIC, Albuquerque, NM 87131 USA
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
美国国家科学基金会;
关键词
quantum state tomography; model selection; compressed sensing;
D O I
10.1088/1367-2630/aaa7e2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint rho >= 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [1] A scalable maximum likelihood method for quantum state tomography
    Baumgratz, T.
    Nuesseler, A.
    Cramer, M.
    Plenio, M. B.
    NEW JOURNAL OF PHYSICS, 2013, 15
  • [2] Quadrature histograms in maximum-likelihood quantum state tomography
    Silva, J. L. E.
    Glancy, S.
    Vasconcelos, H. M.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [3] LOCAL SOLUTIONS OF MAXIMUM LIKELIHOOD ESTIMATION IN QUANTUM STATE TOMOGRAPHY
    Goncalves, Douglas S.
    Gomes-Ruggiero, Marcia A.
    Lavor, Carlile
    Jimenez Farias, Osvaldo
    Souto Ribeiro, P. H.
    QUANTUM INFORMATION & COMPUTATION, 2012, 12 (9-10) : 775 - 790
  • [4] Maximum-likelihood coherent-state quantum process tomography
    Anis, Aamir
    Lvovsky, A. I.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [5] Investigating bias in maximum-likelihood quantum-state tomography
    Silva, G. B.
    Glancy, S.
    Vasconcelos, H. M.
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [6] Maximum-likelihood algorithm for quantum tomography
    Banaszek, K
    ACTA PHYSICA SLOVACA, 1999, 49 (04) : 633 - 638
  • [7] Quantum circuit cutting with maximum-likelihood tomography
    Perlin, Michael A.
    Saleem, Zain H.
    Suchara, Martin
    Osborn, James C.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [8] Quantum circuit cutting with maximum-likelihood tomography
    Michael A. Perlin
    Zain H. Saleem
    Martin Suchara
    James C. Osborn
    npj Quantum Information, 7
  • [9] Superfast maximum-likelihood reconstruction for quantum tomography
    Shang, Jiangwei
    Zhang, Zhengyun
    Ng, Hui Khoon
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [10] Diluted maximum-likelihood algorithm for quantum tomography
    Rehacek, Jaroslav
    Hradil, Zdenek
    Knill, E.
    Lvovsky, A. I.
    PHYSICAL REVIEW A, 2007, 75 (04):