Quadrature histograms in maximum-likelihood quantum state tomography

被引:4
|
作者
Silva, J. L. E. [1 ]
Glancy, S. [2 ]
Vasconcelos, H. M. [1 ,2 ]
机构
[1] Univ Fed Ceara, Dept Engn Teleinformat, BR-60440 Fortaleza, Ceara, Brazil
[2] NIST, Appl & Computat Math Div, Boulder, CO 80305 USA
关键词
DENSITY-MATRIX; TELEPORTATION; GENERATION;
D O I
10.1103/PhysRevA.98.022325
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Quantum state tomography aims to determine the quantum state of a system from measured data and is an essential tool for quantum information science. When dealing with continuous variable quantum states of light, tomography is often done by measuring the field amplitudes at different optical phases using homodyne detection. The quadrature-phase homodyne measurement outputs a continuous variable, so to reduce the computational cost of tomography, researchers often discretize the measurements. We show that this can be done without significantly degrading the fidelity between the estimated state and the true state. This paper studies different strategies for determining the histogram bin widths. We show that computation time can be significantly reduced with little loss in the fidelity of the estimated state when the measurement operators corresponding to each histogram bin are integrated over the bin width.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] Maximum-likelihood algorithm for quantum tomography
    Banaszek, K
    ACTA PHYSICA SLOVACA, 1999, 49 (04) : 633 - 638
  • [2] Maximum-likelihood coherent-state quantum process tomography
    Anis, Aamir
    Lvovsky, A. I.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [3] Investigating bias in maximum-likelihood quantum-state tomography
    Silva, G. B.
    Glancy, S.
    Vasconcelos, H. M.
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [4] Quantum circuit cutting with maximum-likelihood tomography
    Perlin, Michael A.
    Saleem, Zain H.
    Suchara, Martin
    Osborn, James C.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [5] Quantum circuit cutting with maximum-likelihood tomography
    Michael A. Perlin
    Zain H. Saleem
    Martin Suchara
    James C. Osborn
    npj Quantum Information, 7
  • [6] Superfast maximum-likelihood reconstruction for quantum tomography
    Shang, Jiangwei
    Zhang, Zhengyun
    Ng, Hui Khoon
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [7] Diluted maximum-likelihood algorithm for quantum tomography
    Rehacek, Jaroslav
    Hradil, Zdenek
    Knill, E.
    Lvovsky, A. I.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [8] Iterative maximum-likelihood reconstruction in quantum homodyne tomography
    Lvovsky, AI
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (06) : S556 - S559
  • [9] Maximum-likelihood absorption tomography
    Rehacek, J
    Hradil, Z
    Zawisky, M
    Treimer, W
    Strobl, M
    EUROPHYSICS LETTERS, 2002, 59 (05): : 694 - 700
  • [10] Gradient-based stopping rules for maximum-likelihood quantum-state tomography
    Glancy, S.
    Knill, E.
    Girard, M.
    NEW JOURNAL OF PHYSICS, 2012, 14