Gradient-based stopping rules for maximum-likelihood quantum-state tomography

被引:10
|
作者
Glancy, S. [1 ]
Knill, E. [1 ]
Girard, M. [1 ]
机构
[1] NIST, Appl & Computat Math Div, Boulder, CO USA
来源
NEW JOURNAL OF PHYSICS | 2012年 / 14卷
关键词
D O I
10.1088/1367-2630/14/9/095017
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
When performing maximum-likelihood quantum-state tomography, one must find the quantum state that maximizes the likelihood of the state given observed measurements on identically prepared systems. The optimization is usually performed with iterative algorithms. This paper provides a gradient-based upper bound on the ratio of the true maximum likelihood and the likelihood of the state of the current iteration, regardless of the particular algorithm used. This bound is useful for formulating stopping rules for halting iterations of maximization algorithms. We discuss such stopping rules in the context of determining confidence regions from log-likelihood differences when the differences are approximately chi-squared distributed.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Investigating bias in maximum-likelihood quantum-state tomography
    Silva, G. B.
    Glancy, S.
    Vasconcelos, H. M.
    PHYSICAL REVIEW A, 2017, 95 (02)
  • [2] Quadrature histograms in maximum-likelihood quantum state tomography
    Silva, J. L. E.
    Glancy, S.
    Vasconcelos, H. M.
    PHYSICAL REVIEW A, 2018, 98 (02)
  • [3] Maximum-likelihood algorithm for quantum tomography
    Banaszek, K
    ACTA PHYSICA SLOVACA, 1999, 49 (04) : 633 - 638
  • [4] Maximum-likelihood coherent-state quantum process tomography
    Anis, Aamir
    Lvovsky, A. I.
    NEW JOURNAL OF PHYSICS, 2012, 14
  • [5] Quantum circuit cutting with maximum-likelihood tomography
    Perlin, Michael A.
    Saleem, Zain H.
    Suchara, Martin
    Osborn, James C.
    NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [6] Quantum circuit cutting with maximum-likelihood tomography
    Michael A. Perlin
    Zain H. Saleem
    Martin Suchara
    James C. Osborn
    npj Quantum Information, 7
  • [7] Superfast maximum-likelihood reconstruction for quantum tomography
    Shang, Jiangwei
    Zhang, Zhengyun
    Ng, Hui Khoon
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [8] Diluted maximum-likelihood algorithm for quantum tomography
    Rehacek, Jaroslav
    Hradil, Zdenek
    Knill, E.
    Lvovsky, A. I.
    PHYSICAL REVIEW A, 2007, 75 (04):
  • [9] Iterative maximum-likelihood reconstruction in quantum homodyne tomography
    Lvovsky, AI
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2004, 6 (06) : S556 - S559
  • [10] Maximum-likelihood absorption tomography
    Rehacek, J
    Hradil, Z
    Zawisky, M
    Treimer, W
    Strobl, M
    EUROPHYSICS LETTERS, 2002, 59 (05): : 694 - 700