Behavior of the maximum likelihood in quantum state tomography

被引:14
|
作者
Scholten, Travis L. [1 ,2 ]
Blume-Kohout, Robin [1 ,2 ]
机构
[1] Sandia Natl Labs, CCR, Livermore, CA 94550 USA
[2] Univ New Mexico, Ctr Quantum Informat & Control CQuIC, Albuquerque, NM 87131 USA
来源
NEW JOURNAL OF PHYSICS | 2018年 / 20卷
基金
美国国家科学基金会;
关键词
quantum state tomography; model selection; compressed sensing;
D O I
10.1088/1367-2630/aaa7e2
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum state tomography on a d-dimensional system demands resources that grow rapidly with d. They may be reduced by using model selection to tailor the number of parameters in the model (i.e., the size of the density matrix). Most model selection methods typically rely on a test statistic and a null theory that describes its behavior when two models are equally good. Here, we consider the loglikelihood ratio. Because of the positivity constraint rho >= 0, quantum state space does not generally satisfy local asymptotic normality (LAN), meaning the classical null theory for the loglikelihood ratio (the Wilks theorem) should not be used. Thus, understanding and quantifying how positivity affects the null behavior of this test statistic is necessary for its use in model selection for state tomography. We define a new generalization of LAN, metric-projected LAN, show that quantum state space satisfies it, and derive a replacement for the Wilks theorem. In addition to enabling reliable model selection, our results shed more light on the qualitative effects of the positivity constraint on state tomography.
引用
下载
收藏
页数:20
相关论文
共 50 条
  • [21] Maximum pseudo likelihood estimation in network tomography
    Liang, G
    Yu, B
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (08) : 2043 - 2053
  • [22] Maximum likelihood state between measurements
    Luis, Alfredo
    PHYSICAL REVIEW A, 2009, 80 (03):
  • [23] Maximum likelihood successive state splitting
    Singer, H
    Ostendorf, M
    1996 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, CONFERENCE PROCEEDINGS, VOLS 1-6, 1996, : 601 - 604
  • [24] Maximum likelihood based quantum set separation
    Imre, S
    Balázs, F
    COMPUTATIONAL SCIENCE - ICCS 2004, PT 1, PROCEEDINGS, 2004, 3036 : 318 - 325
  • [25] Maximum-likelihood method in quantum estimation
    Paris, MGA
    D'Ariano, GM
    Sacchi, MF
    BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING, PT 2, 2001, 568 : 456 - 467
  • [26] The maximum likelihood reconstruction method for JET neutron tomography
    Craciunescu, T.
    Bonheure, G.
    Kiptily, V.
    Murari, A.
    Soare, S.
    Tiseanu, I.
    Zoita, V.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2008, 595 (03): : 623 - 630
  • [27] Maximum Likelihood reconstruction for fluorescence Optical Projection Tomography
    Darrell, A.
    Meyer, H.
    Birk, U.
    Marias, K.
    Brady, M.
    Ripoll, J.
    8TH IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOENGINEERING, VOLS 1 AND 2, 2008, : 612 - +
  • [28] On the Mortensen equation for maximum likelihood state estimation
    Aihara, SI
    Bagchi, A
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1999, 44 (10) : 1955 - 1961
  • [29] MCMC maximum likelihood for latent state models
    Jacquier, Eric
    Johannes, Michael
    Polson, Nicholas
    JOURNAL OF ECONOMETRICS, 2007, 137 (02) : 615 - 640
  • [30] Maximum Likelihood Channel Decoding with Quantum Annealing Machine
    Ide, Naoki
    Asayama, Tetsuya
    Ueno, Hiroshi
    Ohzeki, Masayuki
    PROCEEDINGS OF 2020 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA2020), 2020, : 91 - 95