Convolutional Neural Network Based Models for Improving Super-Resolution Imaging

被引:23
|
作者
Sun, Yingyi [1 ]
Zhang, Wei [2 ,3 ]
Gu, Hao [1 ]
Liu, Chao [4 ]
Hong, Sheng [1 ]
Xu, Wenhua [1 ]
Yang, Jie [1 ]
Gui, Guan [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Telecommun & Informat Engn, Nanjing 210003, Jiangsu, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Sch Comp Sci, Nanjing 210023, Jiangsu, Peoples R China
[3] Nanjing Univ Posts & Telecommun, Jiangsu Key Lab Big Data Secur & Intelligent Proc, Nanjing 210023, Jiangsu, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Sch Management, Nanjing 210003, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2019年 / 7卷
基金
中国国家自然科学基金;
关键词
Super-resolution imaging; deep learning; convolutional neural networks; adaptive moment estimation; MASSIVE MIMO; DEEP; ALGORITHM;
D O I
10.1109/ACCESS.2019.2908501
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Many fields, such as remote sensing, medical imaging, and biological detection, pose a technical challenge for achieving super-resolution imaging. Convolutional neural networks (CNNs) are considered one of the potential solutions to realize the super-resolution. In this paper three-layer, CNN-based models are proposed to reconstruct the super-resolution images using four optimization algorithms, i.e., stochastic gradient descent, adaptive gradient (AdaGrad), root mean square prop (RMSprop), and adaptive moment estimation (ADAM). Among these four optimizations, ADAM is considered to have the best performance. To further verify the impact of the number of convolution layers on performance, a selection of CNN-based models with four convolutional layers is then proposed, each of which is named with the convolution parameters. All the four-layer models are optimized with ADAM, and the experimental results indicate that the 9-3-3-5 model achieves the best performance in the super-resolution reconstruction task.
引用
收藏
页码:43042 / 43051
页数:10
相关论文
共 50 条
  • [11] Super-Resolution Land Cover Mapping Based on the Convolutional Neural Network
    Jia, Yuanxin
    Ge, Yong
    Chen, Yuehong
    Li, Sanping
    Heuvelink, Gerard B. M.
    Ling, Feng
    REMOTE SENSING, 2019, 11 (15)
  • [12] Terahertz image super-resolution based on a deep convolutional neural network
    Long, Zhenyu
    Wang, Tianyi
    You, Chengwu
    Yang, Zhengang
    Wang, Kejia
    Liu, Jinsong
    APPLIED OPTICS, 2019, 58 (10) : 2731 - 2735
  • [13] Projection Super-resolution Based on Convolutional Neural Network for Computed Tomography
    Tang, Chao
    Zhang, Wenkun
    Li, Ziheng
    Cai, Ailong
    Wang, Linyuan
    Li, Lei
    Liang, Ningning
    Yan, Bin
    15TH INTERNATIONAL MEETING ON FULLY THREE-DIMENSIONAL IMAGE RECONSTRUCTION IN RADIOLOGY AND NUCLEAR MEDICINE, 2019, 11072
  • [14] Improved image super-resolution algorithm based on convolutional neural network
    Xiao J.
    Liu E.
    Zhu L.
    Lei J.
    1600, Chinese Optical Society (37):
  • [15] Image Super-resolution Based on Tiny Recurrent Convolutional Neural Network
    Ma Hao-yu
    Xu Zhi-hai
    Feng Hua-jun
    Li Qi
    Chen Yue-ting
    ACTA PHOTONICA SINICA, 2018, 47 (04)
  • [16] A SUPER-RESOLUTION MAPPING USING A CONVOLUTIONAL NEURAL NETWORK
    Kasetkasem, Teerasit
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 3077 - 3080
  • [17] Image Fusion and Super-Resolution with Convolutional Neural Network
    Zhong, Jinying
    Yang, Bin
    Li, Yuehua
    Zhong, Fei
    Chen, Zhongze
    PATTERN RECOGNITION (CCPR 2016), PT II, 2016, 663 : 78 - 88
  • [18] MobileSR: Efficient Convolutional Neural Network for Super-resolution
    Zhang, Lulu
    Li, HuiYong
    Liu, Xuefeng
    Niu, Jianwei
    Wu, Jiyan
    2020 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2020,
  • [19] Image Super-Resolution With Deep Convolutional Neural Network
    Ji, Xiancai
    Lu, Yao
    Guo, Li
    2016 IEEE FIRST INTERNATIONAL CONFERENCE ON DATA SCIENCE IN CYBERSPACE (DSC 2016), 2016, : 626 - 630
  • [20] Convolutional Neural Network for Smoke Image Super-Resolution
    Liu, Maoshen
    Gu, Ke
    Qiao, Junfei
    PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON COMPUTER SCIENCE AND APPLICATION ENGINEERING (CSAE2018), 2018,