Origin of the unusual reflectance and density contrasts in the phase-change material Cu2GeTe3

被引:35
|
作者
Skelton, J. M. [1 ]
Kobayashi, K. [2 ,3 ,4 ]
Sutou, Y. [5 ]
Elliott, S. R. [1 ]
机构
[1] Univ Cambridge, Dept Chem, Cambridge CB2 1EW, England
[2] Japan Atom Energy Agcy, Quantum Beam Sci Directorate, Sayo, Hyogo 6795148, Japan
[3] Hiroshima Univ, Hiroshima Synchrotron Radiat Ctr, Higashi Hiroshima City, Hiroshima 7390046, Japan
[4] Kouchi Univ Technol, Kami City, Kochi 7828502, Japan
[5] Tohoku Univ, Grad Sch Engn, Dept Mat Sci, Sendai, Miyagi 9808579, Japan
基金
英国工程与自然科学研究理事会;
关键词
TOTAL-ENERGY CALCULATIONS; AMORPHOUS THIN-FILMS; CRYSTAL-STRUCTURE; TRANSITIONS; REFINEMENT; GE1CU2TE3; MEMORY;
D O I
10.1063/1.4809598
中图分类号
O59 [应用物理学];
学科分类号
摘要
The recent demonstration of Cu2GeTe3 (CGT) as a potential phase-change material (PCM) for next-generation non-volatile memories represents a significant discovery. In contrast to widely studied PCMs, amorphous CGT is denser and more reflective than crystalline CGT, and the phase transition takes place to a tetrahedrally bonded crystal, a very different geometry to the octahedrally bonded cubic structures adopted by other PCMs. We have performed a computer-simulational study of CGT, investigating the atomic-level structure and physical properties of both phases. Our results lead to hypotheses to account for the higher amorphous-phase density and reflectivity, which may provide new design criteria for identifying novel PCMs. (C) 2013 AIP Publishing LLC.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Advantages of SixSb2Te phase-change material and its applications in phase-change random access memory
    Gu, Yifeng
    Cheng, Yan
    Song, Sannian
    Zhang, Ting
    Song, Zhitang
    Liu, Xuyan
    Du, Xiaofeng
    Liu, Bo
    Feng, Songlin
    SCRIPTA MATERIALIA, 2011, 65 (07) : 622 - 625
  • [42] A zero density change phase change memory material: GeTe-O structural characteristics upon crystallisation
    Xilin Zhou
    Weiling Dong
    Hao Zhang
    Robert E. Simpson
    Scientific Reports, 5
  • [43] Photoacoustic Spectroscopic Study of Optical Properties of Cu2GeTe3 in Temperature Range from 80 K to 300 K
    Deviprasadh, P. S.
    Madhuri, W.
    Verma, A. S.
    Sarkar, B. K.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2016, 37 (05)
  • [44] The Origin of Optical Contrast in Sb2Te3-Based Phase-Change Materials
    Martinez, Jose C.
    Lu, Li
    Ning, Jing
    Dong, Weiling
    Cao, Tun
    Simpson, Robert E.
    PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2020, 257 (01):
  • [45] Kinetics of laser-induced crystallization of GeTe and Ge2Sb2Te5 chalcogenide phase-change material thin films
    Burtsev, A. A.
    Kiselev, A. V.
    Mikhalevsky, V. A.
    Ionin, V. V.
    Nevzorov, A. A.
    Eliseev, N. N.
    Lotin, A. A.
    PHYSICAL AND CHEMICAL ASPECTS OF THE STUDY OF CLUSTERS NANOSTRUCTURES AND NANOMATERIALS, 2024, (16) : 603 - 611
  • [46] Preparation and Melting/Freezing Characteristics of Cu/Paraffin Nanofluid as Phase-Change Material (PCM)
    Wu, Shuying
    Zhu, Dongsheng
    Zhang, Xiurong
    Huang, Jin
    ENERGY & FUELS, 2010, 24 (03) : 1894 - 1898
  • [47] Reconfiguring Magnetic Infrared Resonances with the Plasmonic Phase-Change Material In3SbTe2
    Hessler, Andreas
    Conrads, Lukas
    Wirth, Konstantin G.
    Wuttig, Matthias
    Taubner, Thomas
    ACS PHOTONICS, 2022, 9 (05): : 1821 - 1828
  • [48] Raman scattering study of GeTe and Ge2Sb2Te5 phase-change materials
    Andrikopoulos, K. S.
    Yannopoulos, S. N.
    Kolobov, A. V.
    Fons, P.
    Tominaga, J.
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2007, 68 (5-6) : 1074 - 1078
  • [49] Structural transition pathway and bipolar switching of the GeTe-Sb2Te3 superlattice as interfacial phase-change memory
    Inoue, Nobuki
    Nakamura, Hisao
    FARADAY DISCUSSIONS, 2019, 213 : 303 - 319
  • [50] Resistance Drift Suppression Utilizing GeTe/Sb2Te3 Superlattice-Like Phase-Change Materials
    Zhou, Lingjun
    Yang, Zhe
    Wang, Xiaojie
    Qian, Hang
    Xu, Ming
    Cheng, Xiaomin
    Tong, Hao
    Miao, Xiangshui
    ADVANCED ELECTRONIC MATERIALS, 2020, 6 (01):