Semilinear Conformable Fractional Differential Equations in Banach Spaces

被引:26
|
作者
Jaiswal, Anjali [1 ]
Bahuguna, D. [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
关键词
Conformable fractional derivative; Fractional-order differential equation; Banach fixed point theorem; MSC; 34G10; 34G20;
D O I
10.1007/s12591-018-0426-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce the concept of a mild solution of conformable fractional abstract initial value problem. We establish the existence and uniqueness theorem using the contraction principle. As a regularity result for a linear problem, we show that the mild solution is in fact a strong solution. We give an example to demonstrate the applicability of the established theoretical results.
引用
收藏
页码:313 / 325
页数:13
相关论文
共 50 条
  • [1] Semilinear Conformable Fractional Differential Equations in Banach Spaces
    Anjali Jaiswal
    D. Bahuguna
    [J]. Differential Equations and Dynamical Systems, 2019, 27 : 313 - 325
  • [2] NONLOCAL FRACTIONAL SEMILINEAR DIFFERENTIAL EQUATIONS IN SEPARABLE BANACH SPACES
    Li, Kexue
    Peng, Jigen
    Gao, Jinghuai
    [J]. ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2013,
  • [3] PSEUDO ALMOST AUTOMORPHY OF SEMILINEAR FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Xia, Zhinan
    Fan, Meng
    Agarwal, Ravi P.
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2016, 19 (03) : 741 - 764
  • [4] Pseudo almost automorphy of semilinear fractional differential equations in Banach Spaces
    Zhinan Xia
    Meng Fan
    Ravi P. Agarwal
    [J]. Fractional Calculus and Applied Analysis, 2016, 19 : 741 - 764
  • [5] Nonlocal Conformable-Fractional Differential Equations with a Measure of Noncompactness in Banach Spaces
    Bouaouid, Mohamed
    Hannabou, Mohamed
    Hilal, Khalid
    [J]. JOURNAL OF MATHEMATICS, 2020, 2020
  • [6] Impulsive differential equations involving general conformable fractional derivative in Banach spaces
    Jin Liang
    Yunyi Mu
    Ti-Jun Xiao
    [J]. Revista de la Real Academia de Ciencias Exactas, Físicas y Naturales. Serie A. Matemáticas, 2022, 116
  • [7] Impulsive differential equations involving general conformable fractional derivative in Banach spaces
    Liang, Jin
    Mu, Yunyi
    Xiao, Ti-Jun
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [8] ON SEMILINEAR FRACTIONAL ORDER DIFFERENTIAL INCLUSIONS IN BANACH SPACES
    Kamenskii, Mikhail
    Obukhovskii, Valeri
    Petrosyan, Garik
    Yao, Jen-Chih
    [J]. FIXED POINT THEORY, 2017, 18 (01): : 269 - 291
  • [9] SEMILINEAR FRACTIONAL ORDER INTEGRO-DIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN BANACH SPACES
    Aissani, Khalida
    Benchohra, Mouffak
    [J]. ARCHIVUM MATHEMATICUM, 2013, 49 (02): : 105 - 117
  • [10] Existence Results for a Class of Semilinear Fractional Partial Differential Equations with Delay in Banach Spaces
    Zhu, Bo
    Han, Baoyan
    Lin, Xiangyun
    [J]. JOURNAL OF FUNCTION SPACES, 2019, 2019