Impulsive differential equations involving general conformable fractional derivative in Banach spaces

被引:0
|
作者
Jin Liang
Yunyi Mu
Ti-Jun Xiao
机构
[1] Shanghai Jiao Tong University,School of Mathematical Sciences
[2] Shanghai Dianji University,Direction of Applied Mathematics, School of Arts and Sciences
[3] Fudan University,Shanghai Key Laboratory for Contemporary Applied Mathematics, School of Mathematical Sciences
关键词
General conformable fractional derivative; Impulsive; Sobolev-type integro-differential equations; -periodic; Delay evolution equations; Primary 26A33; Secondary 46B50;
D O I
暂无
中图分类号
学科分类号
摘要
This paper deals with two classes of impulsive equations involving the general conformable fractional derivative in Banach spaces: (1) impulsive Sobolev-type integro-differential equations with the general conformable fractional derivative, (2) impulsive delay evolution equations with the general conformable fractional derivative. By combining the generalized Laplace transform and the properties of the general conformable fractional derivative, we present a proper definition of mild solutions for the impulsive integro-differential equations with the general conformable fractional derivative. In view of this definition, we obtain a new existence theorem of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for a normal fractional inhomogeneous evolution equation with the general conformable fractional derivative (Theorem 2.3) which will be used to study the (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations with the general conformable fractional derivative. Then we establish existence and uniqueness theorems for the impulsive integro-differential equations with the general conformable fractional derivative. Next, we derive existence theorems of (ω,c)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(\omega ,c)$$\end{document}-periodic solutions for the impulsive delay evolution equations involving the general conformable fractional derivative. Finally, applications are also given to illustrate our abstract results.
引用
收藏
相关论文
共 50 条
  • [1] Impulsive differential equations involving general conformable fractional derivative in Banach spaces
    Liang, Jin
    Mu, Yunyi
    Xiao, Ti-Jun
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2022, 116 (03)
  • [2] Impulsive integro-differential systems involving conformable fractional derivative in Banach space
    Kataria, Haribhai R.
    Patel, Prakashkumar H.
    Shah, Vishant
    [J]. INTERNATIONAL JOURNAL OF DYNAMICS AND CONTROL, 2024, 12 (01) : 56 - 64
  • [3] Impulsive integro-differential systems involving conformable fractional derivative in Banach space
    Haribhai R. Kataria
    Prakashkumar H. Patel
    Vishant Shah
    [J]. International Journal of Dynamics and Control, 2024, 12 : 56 - 64
  • [4] Semilinear Conformable Fractional Differential Equations in Banach Spaces
    Jaiswal, Anjali
    Bahuguna, D.
    [J]. DIFFERENTIAL EQUATIONS AND DYNAMICAL SYSTEMS, 2019, 27 (1-3) : 313 - 325
  • [5] Semilinear Conformable Fractional Differential Equations in Banach Spaces
    Anjali Jaiswal
    D. Bahuguna
    [J]. Differential Equations and Dynamical Systems, 2019, 27 : 313 - 325
  • [6] IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Benchohra, Mouffak
    Seba, Djamila
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2009,
  • [7] A class of nonlocal impulsive differential equations with conformable fractional derivative
    Bouaouid, Mohamed
    Kajouni, Ahmed
    Hilal, Khalid
    Melliani, Said
    [J]. CUBO-A MATHEMATICAL JOURNAL, 2022, 24 (03): : 439 - 455
  • [8] ON SOME IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Wang, JinRong
    Wei, W.
    Yang, YanLong
    [J]. OPUSCULA MATHEMATICA, 2010, 30 (04) : 507 - 525
  • [9] NONLINEAR IMPULSIVE FRACTIONAL DIFFERENTIAL EQUATIONS IN BANACH SPACES
    Guo, Tian Liang
    [J]. TOPOLOGICAL METHODS IN NONLINEAR ANALYSIS, 2013, 42 (01) : 221 - 232
  • [10] Boundary value problems for fractional differential equations involving Caputo derivative in Banach spaces
    JinRong Wang
    Linli Lv
    Yong Zhou
    [J]. Journal of Applied Mathematics and Computing, 2012, 38 (1-2) : 209 - 224