Exact solutions of coupled nonlinear Klein-Gordon equations

被引:28
|
作者
Yusufoglu, E. [1 ]
Bekir, A. [1 ]
机构
[1] Dumlupinar Univ, Art Sci Fac, Dept Math, Kutahya, Turkey
关键词
Exact solutions; tanh method; Coupled nonlinear Klein-Gordon equations;
D O I
10.1016/j.mcm.2008.02.007
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this paper, we employ the tanh method for traveling wave solutions of coupled nonlinear Klein-Gordon equations. Based on the idea of the tanh method, a simple and efficient method is proposed for obtaining exact solutions of nonlinear evolution equations. The solutions obtained include solitons and periodic solutions. (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1694 / 1700
页数:7
相关论文
共 50 条
  • [21] New exact solutions of Klein-Gordon
    Lu D.
    Yang L.
    Hong B.
    Jiangsu Daxue Xuebao (Ziran Kexue Ban) / Journal of Jiangsu University (Natural Science Edition), 2010, 31 (01): : 120 - 124
  • [22] Bifurcations of traveling wave solutions in the N-coupled nonlinear Klein-Gordon equations
    Yao, Si-Sheng
    Xu, Yu-Guang
    PROCEEDINGS OF THE 5TH INTERNATIONAL CONFERENCE ON NONLINEAR MECHANICS, 2007, : 1403 - 1409
  • [23] NUMERICAL TREATMENT OF COUPLED NONLINEAR HYPERBOLIC KLEIN-GORDON EQUATIONS
    Doha, E. H.
    Bhrawy, A. H.
    Baleanu, D.
    Abdelkawy, M. A.
    ROMANIAN JOURNAL OF PHYSICS, 2014, 59 (3-4): : 247 - 264
  • [24] Solitary and periodic traveling wave solutions for a class of coupled nonlinear Klein-Gordon equations
    Xu, Wei
    Shen, Jianwei
    CHAOS SOLITONS & FRACTALS, 2008, 37 (03) : 912 - 917
  • [25] NONLINEAR BOUNDARY DISSIPATION FOR A COUPLED SYSTEM OF KLEIN-GORDON EQUATIONS
    Louredo, Aldo T.
    Milla Miranda, M.
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2010,
  • [26] Single soliton solutions of the coupled nonlinear Klein-Gordon equations with power law nonlinearity
    Chen, Jing
    Yang, Jie
    Yang, Hongxiang
    APPLIED MATHEMATICS AND COMPUTATION, 2014, 246 : 184 - 191
  • [28] PARTIALLY INVARIANT SOLUTIONS OF NONLINEAR KLEIN-GORDON AND LAPLACE EQUATIONS
    MARTINA, L
    WINTERNITZ, P
    JOURNAL OF MATHEMATICAL PHYSICS, 1992, 33 (08) : 2718 - 2727
  • [29] ON SOLUTIONS WITH COMPACT SPECTRUM TO NONLINEAR KLEIN-GORDON AND SCHRODINGER EQUATIONS
    Comech, Andrew
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2022, 54 (02) : 2128 - 2141
  • [30] Decay for nonlinear Klein-Gordon equations
    Vladimir Georgiev
    Sandra Lucente
    Nonlinear Differential Equations and Applications NoDEA, 2004, 11 : 529 - 555