Uniform local amenability

被引:18
|
作者
Brodzki, Jacek [1 ]
Niblo, Graham A. [1 ]
Spakula, Jan [2 ]
Willett, Rufus [3 ]
Wright, Nick [1 ]
机构
[1] Univ Southampton, Southampton SO17 1BJ, Hants, England
[2] Univ Munster, Math Inst, D-48149 Munster, Germany
[3] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Coarse embedding in Hilbert space; property A; operator norm localization; metric sparsification; expander; graphs with large girth; OPERATOR NORM LOCALIZATION; GROMOV MONSTER GROUPS; HIGHER INDEX THEORY; METRIC-SPACES; LARGE GIRTH; PROPERTY; EXPANDERS; GRAPHS;
D O I
10.4171/JNCG/128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main results of this paper show that various coarse ('large scale') geometric properties are closely related. In particular, we show that property A implies the operator norm localisation property, and thus that norms of operators associated to a very large class of metric spaces can be effectively estimated. The main tool is a new property called uniform local amenability. This property is easy to negate, which we use to study some 'bad' spaces: specifically, expanders and graphs with large girth. We also generalise and reprove a theorem of Nowak relating amenability and asymptotic dimension in the quantitative setting.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 50 条
  • [41] Amenability and weak amenability of second conjugate Banach algebras
    Ghahramani, F
    Loy, RJ
    Willis, GA
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (05) : 1489 - 1497
  • [42] Amenability and Super-amenability of Some Feichtinger Algebras
    Rejali, Ali
    Sabzali, Navid
    IRANIAN JOURNAL OF SCIENCE AND TECHNOLOGY TRANSACTION A-SCIENCE, 2020, 44 (04): : 1101 - 1110
  • [43] Automorphism groups of generic structures: extreme amenability and amenability
    Ghadernezhad, Zaniar
    Khalilian, Hamed
    Pourmahdian, Massoud
    FUNDAMENTA MATHEMATICAE, 2018, 242 (01) : 1 - 23
  • [44] UNIFORM CONNECTEDNESS AND UNIFORM LOCAL CONNECTEDNESS FOR LATTICE-VALUED UNIFORM CONVERGENCE SPACES
    Jaeger, G.
    IRANIAN JOURNAL OF FUZZY SYSTEMS, 2016, 13 (03): : 95 - 111
  • [45] MODULE AMENABILITY AND WEAK MODULE AMENABILITY OF BANACH ALGEBRAS
    Bami, M. L.
    Valaei, M.
    Amini, M.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 35 - 44
  • [46] Amenability and uniqueness
    Ciuperca, A.
    Giordano, T.
    Ng, P. W.
    Niu, Z.
    ADVANCES IN MATHEMATICS, 2013, 240 : 325 - 345
  • [47] On the α-amenability of hypergroups
    Azimifard, Ahmadreza
    MONATSHEFTE FUR MATHEMATIK, 2008, 155 (01): : 1 - 13
  • [48] On the α-amenability of hypergroups
    Ahmadreza Azimifard
    Monatshefte für Mathematik, 2008, 155 : 1 - 13
  • [49] Relative amenability
    Caprace, Pierre-Emmanuel
    Monod, Nicolas
    GROUPS GEOMETRY AND DYNAMICS, 2014, 8 (03) : 747 - 774
  • [50] QUESTIONS ON AMENABILITY
    Bergelson, Vitaly
    ENSEIGNEMENT MATHEMATIQUE, 2008, 54 (1-2): : 32 - 34