Uniform local amenability

被引:18
|
作者
Brodzki, Jacek [1 ]
Niblo, Graham A. [1 ]
Spakula, Jan [2 ]
Willett, Rufus [3 ]
Wright, Nick [1 ]
机构
[1] Univ Southampton, Southampton SO17 1BJ, Hants, England
[2] Univ Munster, Math Inst, D-48149 Munster, Germany
[3] Univ Hawaii Manoa, Dept Math, Honolulu, HI 96822 USA
基金
美国国家科学基金会; 英国工程与自然科学研究理事会;
关键词
Coarse embedding in Hilbert space; property A; operator norm localization; metric sparsification; expander; graphs with large girth; OPERATOR NORM LOCALIZATION; GROMOV MONSTER GROUPS; HIGHER INDEX THEORY; METRIC-SPACES; LARGE GIRTH; PROPERTY; EXPANDERS; GRAPHS;
D O I
10.4171/JNCG/128
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The main results of this paper show that various coarse ('large scale') geometric properties are closely related. In particular, we show that property A implies the operator norm localisation property, and thus that norms of operators associated to a very large class of metric spaces can be effectively estimated. The main tool is a new property called uniform local amenability. This property is easy to negate, which we use to study some 'bad' spaces: specifically, expanders and graphs with large girth. We also generalise and reprove a theorem of Nowak relating amenability and asymptotic dimension in the quantitative setting.
引用
收藏
页码:583 / 603
页数:21
相关论文
共 50 条
  • [31] Uniform annihilators of local cohomology
    Zhou, Caijun
    JOURNAL OF ALGEBRA, 2006, 305 (01) : 585 - 602
  • [32] Local connectedness made uniform
    Baboolal, D
    APPLIED CATEGORICAL STRUCTURES, 2000, 8 (1-2) : 377 - 390
  • [33] Local rigidity of uniform lattices
    Gelander, Tsachik
    Levit, Arie
    COMMENTARII MATHEMATICI HELVETICI, 2018, 93 (04) : 781 - 827
  • [34] SETS OF LOCAL UNIFORM CONVERGENCE
    LICK, DR
    MATHEMATICA SCANDINAVICA, 1966, 19 (01) : 127 - &
  • [35] LEFT THICKNESS, LEFT AMENABILITY AND EXTREME LEFT AMENABILITY
    WONG, JCS
    SEMIGROUP FORUM, 1983, 26 (3-4) : 307 - 316
  • [36] φ-AMENABILITY AND CHARACTER AMENABILITY OF SOME CLASSES OF BANACH ALGEBRAS
    Essmaili, M.
    Filali, M. .
    Davidson, Kenneth R.
    HOUSTON JOURNAL OF MATHEMATICS, 2013, 39 (02): : 515 - 529
  • [37] Essential φ-amenability and essential character amenability of Frechet algebras
    Ghavabeshi, Ali
    Darabi, Ali
    Forouzanfar, Abdolmohammad
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2023, 54 (01): : 97 - 109
  • [38] Approximate amenability and pseudo-amenability in Banach algebras
    Zhang, Yong
    ANNALS OF MATHEMATICAL SCIENCES AND APPLICATIONS, 2023, 8 (02) : 309 - 320
  • [39] Amenability and Super-amenability of Some Feichtinger Algebras
    Ali Rejali
    Navid Sabzali
    Iranian Journal of Science and Technology, Transactions A: Science, 2020, 44 : 1101 - 1110
  • [40] Module amenability and weak module amenability of banach algebras
    Bami, M.L.
    Valaei, M.
    Amini, M.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2014, 76 (04): : 35 - 44