RESOLUTION OF THE CANONICAL FIBER METRICS FOR A LEFSCHETZ FIBRATION

被引:4
|
作者
Melrose, Richard [1 ]
Zhu, Xuwen [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
CONSTRUCTION; ASYMPTOTICS;
D O I
10.4310/jdg/1518490819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the family of constant curvature fiber metrics for a Lefschetz fibration with regular fibers of genus greater than one. A result of Obitsu and Wolpert is refined by showing that on an appropriate resolution of the total space, constructed by iterated blow-up, this family is log-smooth, i.e., polyhomogeneous with integral powers but possible multiplicities, at the preimage of the singular fibers in terms of parameters of size comparable to the logarithm of the length of the shrinking geodesic.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 50 条
  • [41] A continuity method to construct canonical metrics
    Gabriele La Nave
    Gang Tian
    Mathematische Annalen, 2016, 365 : 911 - 921
  • [42] On canonical metrics on Cartan–Hartogs domains
    Zhiming Feng
    Zhenhan Tu
    Mathematische Zeitschrift, 2014, 278 : 301 - 320
  • [43] CscK metrics near the canonical class
    Guo, Bin
    Jian, Wangjian
    Shi, Yalong
    Song, Jian
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2025, 2025 (820): : 153 - 165
  • [44] Quantization of symplectic fibrations and canonical metrics
    Ioos, Louis
    Polterovich, Leonid
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2023, 34 (08)
  • [45] Energy functionals and canonical Kahler metrics
    Song, Jian
    Weinkove, Ben
    DUKE MATHEMATICAL JOURNAL, 2007, 137 (01) : 159 - 184
  • [46] Canonical metrics on holomorphic Courant algebroids
    Garcia-Fernandez, Mario
    Rubio, Roberto
    Shahbazi, Carlos
    Tipler, Carl
    PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2022, 125 (03) : 700 - 758
  • [47] Canonical metrics on generalized Hartogs triangles
    Bi, Enchao
    Hou, Zelin
    COMPTES RENDUS MATHEMATIQUE, 2022, 360 (01) : 305 - 313
  • [48] ON CANONICAL RADIAL KÄHLER METRICS
    Loi, Andrea
    Salis, Filippo
    Zuddas, Fabio
    OSAKA JOURNAL OF MATHEMATICS, 2023, 60 (03) : 545 - 554
  • [49] Vortex type equations and canonical metrics
    Keller, Julien
    MATHEMATISCHE ANNALEN, 2007, 337 (04) : 923 - 979
  • [50] Canonical metrics on stable vector bundles
    Wang, XW
    COMMUNICATIONS IN ANALYSIS AND GEOMETRY, 2005, 13 (02) : 253 - 285