RESOLUTION OF THE CANONICAL FIBER METRICS FOR A LEFSCHETZ FIBRATION

被引:4
|
作者
Melrose, Richard [1 ]
Zhu, Xuwen [2 ]
机构
[1] MIT, Dept Math, Cambridge, MA 02139 USA
[2] Stanford Univ, Dept Math, Stanford, CA 94305 USA
关键词
CONSTRUCTION; ASYMPTOTICS;
D O I
10.4310/jdg/1518490819
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the family of constant curvature fiber metrics for a Lefschetz fibration with regular fibers of genus greater than one. A result of Obitsu and Wolpert is refined by showing that on an appropriate resolution of the total space, constructed by iterated blow-up, this family is log-smooth, i.e., polyhomogeneous with integral powers but possible multiplicities, at the preimage of the singular fibers in terms of parameters of size comparable to the logarithm of the length of the shrinking geodesic.
引用
收藏
页码:295 / 317
页数:23
相关论文
共 50 条
  • [11] Lefschetz Fibration Structures on Knot Surgery 4-Manifolds
    Park, Jongil
    Yun, Ki-Heon
    MICHIGAN MATHEMATICAL JOURNAL, 2011, 60 (03) : 525 - 544
  • [12] On Minimal Number of Singular Fibers in a Genus-2 Lefschetz Fibration
    Monden, Naoyuki
    TOKYO JOURNAL OF MATHEMATICS, 2012, 35 (02) : 483 - 490
  • [13] Brane resolution through fibration
    Vazquez-Poritz, Justin F.
    Zhang, Zhibai
    PHYSICAL REVIEW D, 2012, 86 (10):
  • [14] Upper Bounds for the Minimal Number of Singular Fibers in a Lefschetz Fibration over the Torus
    Hamada, Noriyuki
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (02) : 275 - 291
  • [16] Conformally flat metrics and S1-fibration
    Itoh, M
    Nakada, N
    Satou, T
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2005, 81 (03) : 61 - 63
  • [17] On flops and canonical metrics
    Cheltsov, Ivan A.
    Rubinstein, Yanir A.
    ANNALI DELLA SCUOLA NORMALE SUPERIORE DI PISA-CLASSE DI SCIENZE, 2018, 18 (01) : 283 - 311
  • [18] Canonical sasakian metrics
    Boyer, Charles P.
    Galicki, Krzysztof
    Simanca, Santiago R.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 279 (03) : 705 - 733
  • [19] Canonical Sasakian Metrics
    Charles P. Boyer
    Krzysztof Galicki
    Santiago R. Simanca
    Communications in Mathematical Physics, 2008, 279 : 705 - 733
  • [20] Lefschetz Numbers for Maps of Fiber Spaces
    Artamonov, D. V.
    MATHEMATICAL NOTES, 2008, 84 (5-6) : 601 - 614