The unstable spectrum of the Navier-Stokes operator in the limit of vanishing viscosity

被引:1
|
作者
Shvydkoy, Roman [1 ]
Friedlander, Susan [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.anihpc.2007.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Navier-Stokes equations for the motion of an incompressible fluid in three dimensions are considered. A partition of the evolution operator into high frequency and low frequency parts is derived. This decomposition is used to prove that the eigenvalues of the Navier-Stokes operator in the inviscid limit converge precisely to the eigenvalues of the Euler operator beyond the essential spectrum. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:713 / 724
页数:12
相关论文
共 50 条
  • [21] On the essential spectrum of the linearized Navier-Stokes operator
    M. Faierman
    R. J. Fries
    R. Mennicken
    M. Möller
    Integral Equations and Operator Theory, 2000, 38 : 9 - 27
  • [22] ON THE VANISHING VISCOSITY LIMIT FOR 2-DIMENSIONAL NAVIER-STOKES EQUATIONS WITH SINGULAR INITIAL DATA
    MARCHIORO, C
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 1990, 12 (06) : 463 - 470
  • [23] Vanishing vertical viscosity limit of anisotropic Navier-Stokes equation with no-slip boundary condition
    Tao, Tao
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 265 (09) : 4283 - 4310
  • [24] Vanishing viscosity limit for the compressible Navier-Stokes system via measure-valued solutions
    Basaric, Danica
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2020, 27 (06):
  • [25] On maximum enstrophy dissipation in 2D Navier-Stokes flows in the limit of vanishing viscosity
    Matharu, Pritpal
    Protas, Bartosz
    Yoneda, Tsuyoshi
    PHYSICA D-NONLINEAR PHENOMENA, 2022, 441
  • [26] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    Huang FeiMin
    Wang Yi
    Wang Yong
    Yang Tong
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (04) : 653 - 672
  • [27] On a variational inequality for the Navier-Stokes operator with variable viscosity
    de Araújo, GM
    de Menezes, SB
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2006, 5 (03) : 421 - 434
  • [28] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    FeiMin Huang
    Yi Wang
    Yong Wang
    Tong Yang
    Science China Mathematics, 2015, 58 : 653 - 672
  • [29] Vanishing viscosity of isentropic Navier-Stokes equations for interacting shocks
    HUANG FeiMin
    WANG Yi
    WANG Yong
    YANG Tong
    Science China Mathematics, 2015, 58 (04) : 653 - 672