On maximum enstrophy dissipation in 2D Navier-Stokes flows in the limit of vanishing viscosity

被引:0
|
作者
Matharu, Pritpal [1 ,3 ]
Protas, Bartosz [1 ]
Yoneda, Tsuyoshi [2 ]
机构
[1] McMaster Univ, Dept Math & Stat, Hamilton, ON, Canada
[2] Hitotsubashi Univ, Grad Sch Econ, 2 1 Naka, Kunitachi, Tokyo 1868601, Japan
[3] Japan Soc Promot Sci, Int Res, Tokyo, Japan
基金
日本学术振兴会; 英国工程与自然科学研究理事会; 加拿大自然科学与工程研究理事会;
关键词
2D Navier-Stokes equation; Enstrophy dissipation; Inviscid limit; PDE-constrained optimization; ANOMALOUS DISSIPATION; VORTEX SHEET; ENERGY; TURBULENCE; GROWTH;
D O I
10.1016/j.physd.2022.133517
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider enstrophy dissipation in two-dimensional (2D) Navier-Stokes flows and focus on how this quantity behaves in the limit of vanishing viscosity. After recalling a number of a priori estimates providing lower and upper bounds on this quantity, we state an optimization problem aimed at probing the sharpness of these estimates as functions of viscosity. More precisely, solutions of this problem are the initial conditions with fixed palinstrophy and possessing the property that the resulting 2D Navier- Stokes flows locally maximize the enstrophy dissipation over a given time window. This problem is solved numerically with an adjoint-based gradient ascent method and solutions obtained for a broad range of viscosities and lengths of the time window reveal the presence of multiple branches of local maximizers, each associated with a distinct mechanism for the amplification of palinstrophy. The dependence of the maximum enstrophy dissipation on viscosity is shown to be in quantitative agreement with the estimate due to Ciampa et al. (2021), demonstrating the sharpness of this bound.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] The vanishing viscosity limit for 2D Navier-Stokes in a rough domain
    Gerard-Varet, David
    Lacave, Christophe
    Nguyen, Toan T.
    Rousset, Frederic
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 45 - 84
  • [2] Vanishing enstrophy dissipation in two-dimensional Navier-Stokes turbulence in the inviscid limit
    Tran, Chuong V.
    Dritschel, David G.
    [J]. JOURNAL OF FLUID MECHANICS, 2006, 559 : 107 - 116
  • [3] Vanishing of Long Time average p-enstrophy Dissipation Rate in the Inviscid Limit of the 2D Damped Navier-Stokes Equations
    Wagner, Raphael
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2024, 405 (08)
  • [4] Enstrophy dissipation and vortex thinning for the incompressible 2D Navier-Stokes equations
    Jeong, In-Jee
    Yoneda, Tsuyoshi
    [J]. NONLINEARITY, 2021, 34 (04) : 1837 - 1853
  • [5] On the vanishing viscosity limit for the 2D incompressible Navier-Stokes equations with the friction type boundary conditions
    Clopeau, T
    Mikelic, A
    Robert, R
    [J]. NONLINEARITY, 1998, 11 (06) : 1625 - 1636
  • [6] The zero-viscosity limit of the 2D Navier-Stokes equations
    Bona, JL
    Wu, JH
    [J]. STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) : 265 - 278
  • [7] Maximum amplification of enstrophy in three-dimensional Navier-Stokes flows
    Kang, Di
    Yun, Dongfang
    Protas, Bartosz
    [J]. JOURNAL OF FLUID MECHANICS, 2020, 893 (893)
  • [8] The unstable spectrum of the Navier-Stokes operator in the limit of vanishing viscosity
    Shvydkoy, Roman
    Friedlander, Susan
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2008, 25 (04): : 713 - 724
  • [9] Vanishing viscosity limit of Navier-Stokes Equations in Gevrey class
    Cheng, Feng
    Li, Wei-Xi
    Xu, Chao-Jiang
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) : 5161 - 5176
  • [10] On Solutions of the 2D Navier-Stokes Equations with Constant Energy and Enstrophy
    Tian, J.
    Zhang, B. S.
    [J]. INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2015, 64 (06) : 1925 - 1958