The unstable spectrum of the Navier-Stokes operator in the limit of vanishing viscosity

被引:1
|
作者
Shvydkoy, Roman [1 ]
Friedlander, Susan [1 ]
机构
[1] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.anihpc.2007.05.004
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Navier-Stokes equations for the motion of an incompressible fluid in three dimensions are considered. A partition of the evolution operator into high frequency and low frequency parts is derived. This decomposition is used to prove that the eigenvalues of the Navier-Stokes operator in the inviscid limit converge precisely to the eigenvalues of the Euler operator beyond the essential spectrum. (C) 2007 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:713 / 724
页数:12
相关论文
共 50 条
  • [1] Vanishing viscosity limit of Navier-Stokes Equations in Gevrey class
    Cheng, Feng
    Li, Wei-Xi
    Xu, Chao-Jiang
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (14) : 5161 - 5176
  • [2] Vanishing viscosity limit for Navier-Stokes equations with general viscosity to Euler equations
    Zhang, Tingting
    APPLICABLE ANALYSIS, 2018, 97 (11) : 1967 - 1982
  • [3] On Strong Convergence of Attractors of Navier-Stokes Equations in the Limit of Vanishing Viscosity
    Ilyin, A. A.
    Chepyzhov, V. V.
    MATHEMATICAL NOTES, 2017, 101 (3-4) : 746 - 750
  • [4] STATISTICAL PROPERTIES OF SOLUTIONS TO THE NAVIER-STOKES EQUATION IN THE LIMIT OF VANISHING VISCOSITY
    LIAO, W
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (15): : L737 - L741
  • [5] Vanishing Viscosity Limit of the Compressible Navier-Stokes Equations for Solutions to a Riemann Problem
    Huang, Feimin
    Wang, Yi
    Yang, Tong
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2012, 203 (02) : 379 - 413
  • [6] Vanishing viscosity limit for a coupled Navier-Stokes/Allen-Cahn system
    Zhao, Liyun
    Guo, Boling
    Huang, Haiyang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 384 (02) : 232 - 245
  • [7] VANISHING VISCOSITY LIMIT OF THE COMPRESSIBLE NAVIER-STOKES EQUATIONS WITH GENERAL PRESSURE LAW
    Schrecker, Matthew R., I
    Schulz, Simon
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2019, 51 (03) : 2168 - 2205
  • [8] Uniform Regularity and Vanishing Viscosity Limit for the Free Surface Navier-Stokes Equations
    Masmoudi, Nader
    Rousset, Frederic
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2017, 223 (01) : 301 - 417
  • [9] The vanishing viscosity limit for 2D Navier-Stokes in a rough domain
    Gerard-Varet, David
    Lacave, Christophe
    Nguyen, Toan T.
    Rousset, Frederic
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 119 : 45 - 84
  • [10] BOUNDARY LAYERS IN INCOMPRESSIBLE NAVIER-STOKES EQUATIONS WITH NAVIER BOUNDARY CONDITIONS FOR THE VANISHING VISCOSITY LIMIT
    Wang, Xiao-Ping
    Wang, Ya-Guang
    Xin, Zhouping
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2010, 8 (04) : 965 - 998