Automorphisms of Supersingular K3 Surfaces and Salem Polynomials

被引:9
|
作者
Shimada, Ichiro [1 ]
机构
[1] Hiroshima Univ, Grad Sch Sci, Dept Math, 1-3-1 Kagamiyama, Higashihiroshima 7398526, Japan
基金
日本学术振兴会;
关键词
supersingular K3 surface; automorphism; Salem polynomial; PROJECTIVE MODELS;
D O I
10.1080/10586458.2015.1073641
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We present a method to generate many automorphisms of a supersingular K3 surface in odd characteristic. As an application, we show that if p is an odd prime less than or equal to 7919, then every supersingular K3 surface in characteristic p has an automorphism whose characteristic polynomial on the Neron-Severi lattice is a Salem polynomial of degree 22. For a supersingular K3 surface with Artin invariant 10, the same holds for odd primes less than or equal to 17, 389.
引用
收藏
页码:389 / 398
页数:10
相关论文
共 50 条
  • [31] On Well Polynomials of K3 Surfaces
    Elsenhans, Andreas-Stephan
    Jahnel, Joerg
    ALGORITHMIC NUMBER THEORY, 2010, 6197 : 126 - +
  • [32] Order 3 symplectic automorphisms on K3 surfaces
    Garbagnati, Alice
    Montanez, Yulieth Prieto
    MATHEMATISCHE ZEITSCHRIFT, 2022, 301 (01) : 225 - 253
  • [33] Order 3 symplectic automorphisms on K3 surfaces
    Alice Garbagnati
    Yulieth Prieto Montañez
    Mathematische Zeitschrift, 2022, 301 : 225 - 253
  • [34] The Non-symplectic Index of Supersingular K3 Surfaces
    Jang, Junmyeong
    TAIWANESE JOURNAL OF MATHEMATICS, 2019, 23 (06): : 1327 - 1338
  • [35] Unirationality of certain supersingular K3 surfaces in characteristic 5
    Pho, Duc Tai
    Shimada, Ichiro
    MANUSCRIPTA MATHEMATICA, 2006, 121 (04) : 425 - 435
  • [36] Dynkin diagrams of rank 20 on supersingular K3 surfaces
    SHIMADA Ichiro
    ZHANG De-Qi
    ScienceChina(Mathematics), 2015, 58 (03) : 543 - 552
  • [37] Dynkin diagrams of rank 20 on supersingular K3 surfaces
    Shimada, Ichiro
    Zhang, De-Qi
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (03) : 543 - 552
  • [38] Dynkin diagrams of rank 20 on supersingular K3 surfaces
    Ichiro Shimada
    De-Qi Zhang
    Science China Mathematics, 2015, 58 : 543 - 552
  • [39] The Artin invariant of supersingular weighted Delsarte K3 surfaces
    Goto, Y
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1996, 36 (02): : 359 - 363
  • [40] Unirationality of certain supersingular K3 surfaces in characteristic 5
    Duc Tai Pho
    Ichiro Shimada
    manuscripta mathematica, 2006, 121 : 425 - 435