Order 3 symplectic automorphisms on K3 surfaces

被引:0
|
作者
Alice Garbagnati
Yulieth Prieto Montañez
机构
[1] Università Statale di Milano,Dipartimento di Matematica
[2] Università di Bologna,Dipartimento di Matematica
来源
Mathematische Zeitschrift | 2022年 / 301卷
关键词
K3 surfaces; symplectic automorphisms; Abelian surfaces; 14J28; 14J50;
D O I
暂无
中图分类号
学科分类号
摘要
The aim of this paper is to generalize results known for the symplectic involutions on K3 surfaces to the order 3 symplectic automorphisms on K3 surfaces. In particular, we will explicitly describe the action induced on the lattice ΛK3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Lambda _{K3}$$\end{document}, isometric to the second cohomology group of a K3 surface, by a symplectic automorphism of order 3; we exhibit the maps π∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi _*$$\end{document} and π∗\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi ^*$$\end{document} induced in cohomology by the rational quotient map π:X⤏Y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pi :X\dashrightarrow Y$$\end{document}, where X is a K3 surface admitting an order 3 symplectic automorphism σ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma $$\end{document} and Y is the minimal resolution of the quotient X/⟨σ⟩\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X/\langle \sigma \rangle $$\end{document}; we deduce the relation between the Néron–Severi group of X and the one of Y. Applying these results we describe explicit geometric examples and generalize the Shioda–Inose structures.
引用
收藏
页码:225 / 253
页数:28
相关论文
共 50 条