Exploration of LICA Detections in Resting State fMRI

被引:0
|
作者
Chyzhyk, Darya [1 ]
Shinn, Ann K. [2 ,3 ]
Grana, Manuel [1 ]
机构
[1] Univ Basque Country, Dept CCIA, Computat Intelligence Grp, Apdo 649, San Sebastian 20080, Spain
[2] Mclean Hosp, Boston, MA 02478 USA
[3] Harvard Med Sch, Boston, MA 02115 USA
来源
NEW CHALLENGES ON BIOINSPIRED APPLICATIONS: 4TH INTERNATIONAL WORK-CONFERENCE ON THE INTERPLAY BETWEEN NATURAL AND ARTIFICIAL COMPUTATION, IWINAC 2011, PART II | 2011年 / 6687卷
关键词
FUNCTIONAL CONNECTIVITY; REGIONAL HOMOGENEITY; SCHIZOPHRENIA; BRAIN; PREDICTION; DISEASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lattice Independent Component Analysis (LICA) approach consists of a detection of lattice independent vectors (endmembers) that are used as a basis for a linear decomposition of the data (unmixing). In this paper we explore the network detections obtained with LICA in resting state fMRI data from healthy controls and schizophrenic patients. We compare with the findings of a standard Independent Component Analysis (ICA) algorithm. We do not find agreement between LICA and ICA. When comparing findings on a control versus a schizophrenic patient, the results from LICA show greater negative correlations than ICA, pointing to a greater potential for discrimination and construction of specific classifiers.
引用
收藏
页码:104 / 111
页数:8
相关论文
共 50 条
  • [31] Phenotyping Superagers Using Resting-State fMRI
    de Godoy, L. L.
    Studart-Neto, A.
    de Paula, D. R.
    Green, N.
    Halder, A.
    Arantes, P.
    Chaim, K. T.
    Moraes, N. C.
    Yassuda, M. S.
    Nitrini, R.
    Dresler, M.
    Leite, C. da Costa
    Panovska-Griffiths, J.
    Soddu, A.
    Bisdas, S.
    AMERICAN JOURNAL OF NEURORADIOLOGY, 2023, 44 (04) : 424 - 433
  • [32] Resting-state fMRI in primary Sjogren syndrome
    Xing, Wu
    Shi, Wei
    Leng, Yueshuang
    Sun, Xianting
    Guan, Tingting
    Liao, Weihua
    Wang, Xiaoyi
    ACTA RADIOLOGICA, 2018, 59 (09) : 1091 - 1096
  • [33] Resting state fMRI in cluster headache: which role?
    Chiapparini, L.
    Ferraro, S.
    Nigri, A.
    Proietti, A.
    Bruzzone, M. G.
    Leone, M.
    NEUROLOGICAL SCIENCES, 2015, 36 : S45 - S48
  • [34] Evaluation of Multiband EPI Acquisitions for Resting State fMRI
    Preibisch, Christine
    Castrillon G, J. Gabriel
    Buehrer, Martin
    Riedl, Valentin
    PLOS ONE, 2015, 10 (09):
  • [35] Resting state FMRI research in child psychiatric disorders
    Oldehinkel, Marianne
    Francx, Winke
    Beckmann, Christian F.
    Buitelaar, Jan K.
    Mennes, Maarten
    EUROPEAN CHILD & ADOLESCENT PSYCHIATRY, 2013, 22 (12) : 757 - 770
  • [36] Editorial: Origins of the Resting-State fMRI Signal
    Chen, J. Jean
    Herman, Peter
    Keilholz, Shella
    Thompson, Garth J.
    FRONTIERS IN NEUROSCIENCE, 2020, 14
  • [37] Explicability in resting-state fMRI for gender classification
    Raison, Adrien
    Bourdon, Pascal
    Habas, Christophe
    Helbert, David
    2021 SIXTH INTERNATIONAL CONFERENCE ON ADVANCES IN BIOMEDICAL ENGINEERING (ICABME), 2021, : 5 - 8
  • [38] Sampling Rate Effects on Resting State fMRI Metrics
    Huotari, Niko
    Raitamaa, Lauri
    Helakari, Heta
    Kananen, Janne
    Raatikainen, Ville
    Rasila, Aleksi
    Tuovinen, Timo
    Kantola, Jussi
    Borchardt, Viola
    Kiviniemi, Vesa J.
    Korhonen, Vesa O.
    FRONTIERS IN NEUROSCIENCE, 2019, 13
  • [39] Machine learning in resting-state fMRI analysis
    Khosla, Meenakshi
    Jamison, Keith
    Ngo, Gia H.
    Kuceyeski, Amy
    Sabuncu, Mert R.
    MAGNETIC RESONANCE IMAGING, 2019, 64 : 101 - 121
  • [40] Representation learning of resting state fMRI with variational autoencoder
    Kim, Jung-Hoon
    Zhang, Yizhen
    Han, Kuan
    Wen, Zheyu
    Choi, Minkyu
    Liu, Zhongming
    NEUROIMAGE, 2021, 241