Fast Large-Scale Trajectory Clustering

被引:54
|
作者
Wang, Sheng [1 ,2 ]
Bao, Zhifeng [2 ]
Culpepper, J. Shane [2 ]
Sellis, Timos [3 ]
Qin, Xiaolin [4 ]
机构
[1] NYU, New York, NY 10003 USA
[2] RMIT Univ, Melbourne, Vic, Australia
[3] Swinburne Univ Technol, Hawthorn, Vic, Australia
[4] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2019年 / 13卷 / 01期
关键词
ALGORITHM; MANAGEMENT;
D O I
10.14778/3357377.3357380
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the problem of large-scale trajectory data clustering, k-paths, which aims to efficiently identify k "representative" paths in a road network. Unlike traditional clustering approaches that require multiple data-dependent hyperparameters, k-paths can be used for visual exploration in applications such as traffic monitoring, public transit planning, and site selection. By combining map matching with an efficient intermediate representation of trajectories and a novel edge-based distance (EBD) measure, we present a scalable clustering method to solve k-paths. Experiments verify that we can cluster millions of taxi trajectories in less than one minute, achieving improvements of up to two orders of magnitude over state-of-the-art solutions that solve similar trajectory clustering problems.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [41] Large-scale distributed PV cluster division based on Fast Unfolding clustering algorithm
    Wang L.
    Zhang F.
    Kou L.
    Xu Y.
    Hou X.
    Taiyangneng Xuebao/Acta Energiae Solaris Sinica, 2021, 42 (10): : 29 - 34
  • [42] Fast large-scale reionization simulations
    Thomas, Rajat M.
    Zaroubi, Saleem
    Ciardi, Benedetta
    Pawlik, Andreas H.
    Labropoulos, Panagiotis
    Jelic, Vibor
    Bernardi, Gianni
    Brentjens, Michiel A.
    de Bruyn, A. G.
    Harker, Geraint J. A.
    Koopmans, Leon V. E.
    Mellema, Garrelt
    Pandey, V. N.
    Schaye, Joop
    Yatawatta, Sarod
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2009, 393 (01) : 32 - 48
  • [43] A study of large-scale data clustering based on fuzzy clustering
    Li, Yangyang
    Yang, Guoli
    He, Haiyang
    Jiao, Licheng
    Shang, Ronghua
    SOFT COMPUTING, 2016, 20 (08) : 3231 - 3242
  • [44] A study of large-scale data clustering based on fuzzy clustering
    Yangyang Li
    Guoli Yang
    Haiyang He
    Licheng Jiao
    Ronghua Shang
    Soft Computing, 2016, 20 : 3231 - 3242
  • [45] PHOTOMETRIC CALIBRATION AND LARGE-SCALE CLUSTERING IN THE UNIVERSE
    FONG, R
    METCALFE, N
    SHANKS, T
    ASTRONOMY FROM WIDE-FIELD IMAGING, 1994, (161): : 295 - 300
  • [46] Large-Scale Clustering Using Mathematical Programming
    Gnagi, Mario
    Baumann, Philipp
    2017 IEEE INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT (IEEM), 2017, : 789 - 793
  • [47] PROBABILITY FUNCTIONS AND SYSTEMATICS OF LARGE-SCALE CLUSTERING
    MO, HJ
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1988, 3 (06): : 1373 - 1383
  • [48] Robust large-scale clustering based on correntropy
    Jin, Guodong
    Gao, Jing
    Tan, Lining
    PLOS ONE, 2022, 17 (11):
  • [49] Pyramidic clustering of large-scale microarray images
    O'Neill, P., 1600, Oxford University Press (48):
  • [50] Large-scale clustering of galaxies in general relativity
    Jeong, Donghui
    Schmidt, Fabian
    Hirata, Christopher M.
    PHYSICAL REVIEW D, 2012, 85 (02)