Fast Large-Scale Trajectory Clustering

被引:54
|
作者
Wang, Sheng [1 ,2 ]
Bao, Zhifeng [2 ]
Culpepper, J. Shane [2 ]
Sellis, Timos [3 ]
Qin, Xiaolin [4 ]
机构
[1] NYU, New York, NY 10003 USA
[2] RMIT Univ, Melbourne, Vic, Australia
[3] Swinburne Univ Technol, Hawthorn, Vic, Australia
[4] Nanjing Univ Aeronaut & Astronaut, Nanjing, Peoples R China
来源
PROCEEDINGS OF THE VLDB ENDOWMENT | 2019年 / 13卷 / 01期
关键词
ALGORITHM; MANAGEMENT;
D O I
10.14778/3357377.3357380
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we study the problem of large-scale trajectory data clustering, k-paths, which aims to efficiently identify k "representative" paths in a road network. Unlike traditional clustering approaches that require multiple data-dependent hyperparameters, k-paths can be used for visual exploration in applications such as traffic monitoring, public transit planning, and site selection. By combining map matching with an efficient intermediate representation of trajectories and a novel edge-based distance (EBD) measure, we present a scalable clustering method to solve k-paths. Experiments verify that we can cluster millions of taxi trajectories in less than one minute, achieving improvements of up to two orders of magnitude over state-of-the-art solutions that solve similar trajectory clustering problems.
引用
收藏
页码:29 / 42
页数:14
相关论文
共 50 条
  • [31] POSSIBLE LARGE-SCALE CLUSTERING OF QUASARS
    REES, MJ
    SCIAMA, DW
    NATURE, 1967, 213 (5074) : 374 - &
  • [32] THE LARGE-SCALE CLUSTERING OF RADIO GALAXIES
    PEACOCK, JA
    NICHOLSON, D
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1991, 253 (02) : 307 - 319
  • [33] LARGE-SCALE CLUSTERING IN BUBBLE MODELS
    AMENDOLA, L
    BORGANI, S
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1994, 266 (01) : 191 - 202
  • [34] LARGE-SCALE CLUSTERING OF IRAS GALAXIES
    EFSTATHIOU, G
    KAISER, N
    SAUNDERS, W
    LAWRENCE, A
    ROWANROBINSON, M
    ELLIS, RS
    FRENK, CS
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 1990, 247 (02) : P10 - P14
  • [35] Euler Clustering on Large-scale Dataset
    Wu, Jian-Sheng
    Zheng, Wei-Shi
    Lai, Jian-Huang
    Suen, Ching Y.
    IEEE TRANSACTIONS ON BIG DATA, 2018, 4 (04) : 502 - 515
  • [36] Large-scale clustering of cosmic voids
    Chan, Kwan Chuen
    Hamaus, Nico
    Desjacques, Vincent
    PHYSICAL REVIEW D, 2014, 90 (10)
  • [37] Large-scale tandem mass spectrum clustering using fast nearest neighbor searching
    Bittremieux, Wout
    Laukens, Kris
    Noble, William Stafford
    Dorrestein, Pieter C.
    RAPID COMMUNICATIONS IN MASS SPECTROMETRY, 2021,
  • [38] A Fast Semi-Supervised Clustering Framework for Large-Scale Time Series Data
    He, Guoliang
    Pan, Yanzhou
    Xia, Xuewen
    He, Jinrong
    Peng, Rong
    Xiong, Neal N.
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2021, 51 (07): : 4201 - 4216
  • [39] Interpretable Dense Embedding for Large-Scale Textual Data via Fast Fuzzy Clustering
    Kozbagarov, Olzhas
    Mussabayev, Rustam
    Krassovitskiy, Alexander
    Kuldeyev, Nursultan
    ADVANCES IN COMPUTATIONAL COLLECTIVE INTELLIGENCE, ICCCI 2024, PART I, 2024, 2165 : 206 - 218