Motion synthesis and editing in low-dimensional spaces

被引:35
|
作者
Shin, Hyun Joon [1 ]
Lee, Jehee [1 ]
机构
[1] Ajou Univ, Div Digital Media, Suwon 441749, South Korea
关键词
multi dimensional scaling; character animation; user interface;
D O I
10.1002/cav.125
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Human motion is difficult to create and manipulate because of the high dimensionality and spatiotemporal nature of human motion data. Recently, tire use of large collections of captured motion data has added increased realism in character animation. In order to make the synthesis and analysis of motion data tractable, we present a low-dimensional motion space in which high-dimensional human motion can be effectively visualized, synthesized, edited, parameterized, and interpolated in both spatial and temporal domains. Our system allows users to create and edit the motion of animated characters in several ways: The user can sketch and edit a curve oil low-dimensional motion space, directly manipulate the character's pose in three-dimensional object space, or specify key poses to create in-between motions. Copyright (c) 2006 John Wiley & Sons, Ltd.
引用
收藏
页码:219 / 227
页数:9
相关论文
共 50 条
  • [41] Synthesis of low-dimensional polynomial filtering algorithms
    Vinogradov, VN
    Danilov, VP
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2000, 45 (11) : 1214 - 1220
  • [42] Synthesis and Antioxidation of Low-Dimensional Black Phosphorus
    Wang Qin
    Yu Xiahui
    Fu Mingfu
    Deng Shukang
    Feng Xiaobo
    Yang Wen
    Yang Peizhi
    ACTA OPTICA SINICA, 2022, 42 (10)
  • [43] AUTOENCODER-AIDED ANALYSIS OF LOW-DIMENSIONAL HILBERT SPACES
    Zlabys, G.
    Raciunas, M.
    Anisimovas, E.
    LITHUANIAN JOURNAL OF PHYSICS, 2021, 61 (04): : 205 - 214
  • [44] Low-dimensional compact embeddings of symmetric Sobolev spaces with applications
    Faraci, Francesca
    Iannizzotto, Antonio
    Kristaly, Alexandru
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2011, 141 : 383 - 395
  • [45] Decoding Micromotion in Low-dimensional Latent Spaces from StyleGAN
    Wu, Qiucheng
    Jiang, Yifan
    Wu, Junru
    Wang, Kai
    Zhang, Gong
    Shi, Humphrey
    Wang, Zhangyang
    Chang, Shiyu
    CONFERENCE ON PARSIMONY AND LEARNING, VOL 234, 2024, 234 : 108 - 133
  • [46] High-dimensional Bayesian optimization using low-dimensional feature spaces
    Riccardo Moriconi
    Marc Peter Deisenroth
    K. S. Sesh Kumar
    Machine Learning, 2020, 109 : 1925 - 1943
  • [47] High-dimensional Bayesian optimization using low-dimensional feature spaces
    Moriconi, Riccardo
    Deisenroth, Marc Peter
    Sesh Kumar, K. S.
    MACHINE LEARNING, 2020, 109 (9-10) : 1925 - 1943
  • [48] Multi-Object Discovery by Low-Dimensional Object Motion
    Safadoust, Sadra
    Guney, Fatma
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION, ICCV, 2023, : 734 - 744
  • [49] Optimal representation and visualization of multivariate data and functions in low-dimensional spaces
    Jian, S
    MODELING, CONTROL AND OPTIMIZATION OF COMPLEX SYSTEMS: IN HONOR OF PROFESSOR YU-CHI HO, 2003, 14 : 1 - 17
  • [50] Atrial Fibrillation Detection With Spectral Manifolds in Low-Dimensional Latent Spaces
    Bernal-Onate, Carlos-Paul
    Carrera, Enrique V.
    Melgarejo-Meseguer, Francisco-Manuel
    Gordillo-Orquera, Rodolfo
    Garci-A-Alberola, Arcadi
    Rojo-Alvarez, Jose Luis
    IEEE ACCESS, 2023, 11 : 103364 - 103376