Multi-Object Discovery by Low-Dimensional Object Motion

被引:1
|
作者
Safadoust, Sadra [1 ,2 ]
Guney, Fatma [1 ,2 ]
机构
[1] Koc Univ, KUIS AI Ctr, Istanbul, Turkiye
[2] Koc Univ, Dept Comp Engn, Istanbul, Turkiye
关键词
D O I
10.1109/ICCV51070.2023.00074
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recent work in unsupervised multi-object segmentation shows impressive results by predicting motion from a single image despite the inherent ambiguity in predicting motion without the next image. On the other hand, the set of possible motions for an image can be constrained to a low-dimensional space by considering the scene structure and moving objects in it. We propose to model pixel-wise geometry and object motion to remove ambiguity in reconstructing flow from a single image. Specifically, we divide the image into coherently moving regions and use depth to construct flow bases that best explain the observed flow in each region. We achieve state-of-the-art results in unsupervised multi-object segmentation on synthetic and real-world datasets by modeling the scene structure and object motion. Our evaluation of the predicted depth maps shows reliable performance in monocular depth estimation.
引用
收藏
页码:734 / 744
页数:11
相关论文
共 50 条
  • [1] Automatic Topic Discovery for Multi-object Tracking
    Luo, Wenhan
    Stenger, Bjorn
    Zhao, Xiaowei
    Kim, Tae-Kyun
    PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 3820 - 3826
  • [2] A Unified Object Motion and Affinity Model for Online Multi-Object Tracking
    Yin, Junbo
    Wang, Wenguan
    Meng, Qinghao
    Yang, Ruigang
    Shen, Jianbing
    2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 6767 - 6776
  • [3] Trajectories as Topics: Multi-Object Tracking by Topic Discovery
    Luo, Wenhan
    Stenger, Bjorn
    Zhao, Xiaowei
    Kim, Tae-Kyun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2019, 28 (01) : 240 - 252
  • [4] Multi-object tracking using color, texture and motion
    Takala, VaItteri
    Pietikainen, Matti
    2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8, 2007, : 3790 - +
  • [5] Target-Aware Object Discovery and Association for Unsupervised Video Multi-Object Segmentation
    Zhou, Tianfei
    Li, Jianwu
    Li, Xueyi
    Shao, Ling
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 6981 - 6990
  • [6] MAT: Motion-aware multi-object tracking
    Han, Shoudong
    Huang, Piao
    Wang, Hongwei
    Yu, En
    Liu, Donghaisheng
    Pan, Xiaofeng
    NEUROCOMPUTING, 2022, 476 : 75 - 86
  • [7] Multi-object Tracking Combines Motion and Visual Information
    Wang, Fan
    Zhu, En
    Luo, Lei
    Long, Jun
    MODELING DECISIONS FOR ARTIFICIAL INTELLIGENCE (MDAI 2020), 2020, 12256 : 166 - 178
  • [8] Motion estimation and image difference for multi-object tracking
    Oron, Eliezer
    IEEE Aerospace Applications Conference Proceedings, 1999, 4 : 401 - 409
  • [9] Multi-object spectroscopy:: The faint object case
    Le Fèvre, O
    SCIENTIFIC DRIVERS FOR ESO FUTURE VLT/VLTI INSTRUMENTATION, PROCEEDINGS, 2002, : 81 - 86
  • [10] An image motion compensation system for the multi-object double spectrograph
    Marshall, J. L.
    O'Brien, Thomas P.
    Atwood, Bruce
    Byard, Paul L.
    DePoy, D. L.
    Derwent, Mark
    Eastman, Jason D.
    Gonzalez, Raymond
    Pappalardo, Daniel P.
    Pogge, Richard W.
    GROUND-BASED AND AIRBORNE INSTRUMENTATION FOR ASTRONOMY, PTS 1- 3, 2006, 6269