All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries

被引:60
|
作者
Friedl, Jochen [1 ]
Lebedeva, Maria A. [2 ]
Porfyrakis, Kyriakos [2 ]
Stimming, Ulrich [1 ]
Chamberlain, Thomas W. [3 ]
机构
[1] Newcastle Univ, Chem Sch Nat & Environm Sci, Bedson Bldg, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[3] Univ Leeds, Inst Proc Res & Dev, Sch Chem, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ELECTRON-TRANSFER KINETICS; PERFORMANCE; DERIVATIVES; CHARGE;
D O I
10.1021/jacs.7b11041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [31] Linked Picolinamide Nickel Complexes as Redox Carriers for Nonaqueous Flow Batteries
    Chu, Terry
    Popov, Ivan A.
    Andrade, Gabriel A.
    Maurya, Sandip
    Yang, Ping
    Batista, Enrique R.
    Scott, Brian L.
    Mukundan, Rangachary
    Davis, Benjamin L.
    CHEMSUSCHEM, 2019, 12 (07) : 1304 - 1309
  • [32] Systematic Designs of Dicationic Heteroarylpyridiniums as Negolytes for Nonaqueous Redox Flow Batteries
    Ahn, Seongmo
    Jang, Jin Hyeok
    Kang, Jungtaek
    Na, Moony
    Seo, Jia
    Singh, Vikram
    Joo, Jung Min
    Byon, Hye Ryung
    ACS ENERGY LETTERS, 2021, 6 (09): : 3390 - 3397
  • [33] Two-Electron Tetrathiafulvalene Catholytes for Nonaqueous Redox Flow Batteries
    Daub, Nicolas
    Hendriks, Koen H.
    Janssen, Rene A. J.
    BATTERIES & SUPERCAPS, 2022, 5 (12)
  • [34] TEMPO allegro: liquid catholyte redoxmers for nonaqueous redox flow batteries
    Zhao, Yuyue
    Zhang, Jingjing
    Agarwal, Garvit
    Yu, Zhou
    Corman, Rebecca E.
    Wang, Yilin
    Robertson, Lily A.
    Shi, Zhangxing
    Doan, Hieu A.
    Ewoldt, Randy H.
    Shkrob, Ilya A.
    Assary, Rajeev S.
    Cheng, Lei
    Srinivasan, Venkat
    Babinece, Susan J.
    Zhang, Lu
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (31) : 16769 - 16775
  • [35] Simulation of All-Vanadium Redox Flow Batteries based on COMSOL
    Zhu, Mingang
    Wu, Qiuxuan
    Chi, Xiaoni
    Luo, Yanbin
    2017 29TH CHINESE CONTROL AND DECISION CONFERENCE (CCDC), 2017, : 6977 - 6982
  • [36] Azobenzene-Based Low-Potential Anolyte for Nonaqueous Organic Redox Flow Batteries
    Wang, Xiao
    Chai, Jingchao
    Lashgari, Amir
    Jiang, Jianbing Jimmy
    CHEMELECTROCHEM, 2021, 8 (01) : 83 - 89
  • [37] Ambient Temperature Sodium Polysulfide Catholyte for Nonaqueous Redox Flow Batteries
    Self, Ethan C.
    Tyler, Jameson L.
    Nanda, Jagjit
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (08)
  • [38] Dual function organic active materials for nonaqueous redox flow batteries
    Attanayake, N. Harsha
    Liang, Zhiming
    Wang, Yilin
    Kaur, Aman Preet
    Parkin, Sean R.
    Mobley, Justin K.
    Ewoldt, Randy H.
    Landon, James
    Odom, Susan A.
    MATERIALS ADVANCES, 2021, 2 (04): : 1390 - 1401
  • [40] Membranes for all vanadium redox flow batteries
    Tempelman, C. H. L.
    Jacobs, J. F.
    Balzer, R. M.
    Degirmenci, V.
    JOURNAL OF ENERGY STORAGE, 2020, 32