All-Fullerene-Based Cells for Nonaqueous Redox Flow Batteries

被引:60
|
作者
Friedl, Jochen [1 ]
Lebedeva, Maria A. [2 ]
Porfyrakis, Kyriakos [2 ]
Stimming, Ulrich [1 ]
Chamberlain, Thomas W. [3 ]
机构
[1] Newcastle Univ, Chem Sch Nat & Environm Sci, Bedson Bldg, Newcastle Upon Tyne NE1 7RU, Tyne & Wear, England
[2] Univ Oxford, Dept Mat, 16 Parks Rd, Oxford OX1 3PH, England
[3] Univ Leeds, Inst Proc Res & Dev, Sch Chem, Leeds LS2 9JT, W Yorkshire, England
基金
英国工程与自然科学研究理事会;
关键词
ELECTRON-TRANSFER KINETICS; PERFORMANCE; DERIVATIVES; CHARGE;
D O I
10.1021/jacs.7b11041
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Redox flow batteries have the potential to revolutionize our use of intermittent sustainable energy sources such as solar and wind power by storing the energy in liquid electrolytes. Our concept study utilizes a novel electrolyte system, exploiting derivatized fullerenes as both anolyte and catholyte species in a series of battery cells, including a symmetric, single species system which alleviates the common problem of membrane crossover. The prototype multielectron system, utilizing molecular based charge carriers, made from inexpensive, abundant, and sustainable materials, principally, C and Fe, demonstrates remarkable current and energy densities and promising long-term cycling stability.
引用
收藏
页码:401 / 405
页数:5
相关论文
共 50 条
  • [21] Two-electron-active tetracyanoethylene for nonaqueous redox flow batteries
    Wang, Xiao
    Chai, Jingchao
    Devi, Nilakshi
    Lashgari, Amir
    Chaturvedi, Ashwin
    Jiang, Jianbing ''Jimmy''
    JOURNAL OF MATERIALS CHEMISTRY A, 2021, 9 (24) : 13867 - 13873
  • [22] Fluorination Enables Simultaneous Improvements of a Dialkoxybenzene-Based Redoxmer for Nonaqueous Redox Flow Batteries
    Bheemireddy, Sambasiva R.
    Li, Zhiguang
    Zhang, Jingjing
    Agarwal, Garvit
    Robertson, Lily A.
    Shkrob, Ilya A.
    Assary, Rajeev S.
    Zhang, Zhengcheng
    Wei, Xiaoliang
    Cheng, Lei
    Zhang, Lu
    ACS APPLIED MATERIALS & INTERFACES, 2022, 14 (25) : 28834 - 28841
  • [23] Protocol for Evaluating Anion Exchange Membranes for Nonaqueous Redox Flow Batteries
    Tami, Jessica L.
    Mazumder, Md. Motiur R.
    Cook, Grace E.
    Minteer, Shelley D.
    McNeil, Anne J.
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (40) : 53643 - 53651
  • [24] TEMPO-Based Catholyte for High-Energy Density Nonaqueous Redox Flow Batteries
    Wei, Xiaoliang
    Xu, Wu
    Vijayakumar, Murugesan
    Cosimbescu, Lelia
    Liu, Tianbiao
    Sprenkle, Vincent
    Wang, Wei
    ADVANCED MATERIALS, 2014, 26 (45) : 7649 - 7653
  • [25] Through-Plane Conductivities of Membranes for Nonaqueous Redox Flow Batteries
    Hudak, Nicholas S.
    Small, Leo J.
    Pratt, Harry D., III
    Anderson, Travis M.
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2015, 162 (10) : A2188 - A2194
  • [26] Organoboron-modified cyanometalates for use in nonaqueous redox flow batteries
    Gray, Harry
    McNicholas, Brendon
    Despagnet-Ayoub, Emmanuelle
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 256
  • [27] Nonaqueous redox flow batteries for grid-scale energy storage
    Brushett, Fikile R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2013, 246
  • [28] Future perspective on redox flow batteries: aqueous versus nonaqueous electrolytes
    Tang, Lina
    Leung, Puiki
    Xu, Qian
    Mohamed, Mohd Rusllim
    Dai, Shuyang
    Zhu, Xun
    Flox, Cristina
    Shah, Akeel A.
    CURRENT OPINION IN CHEMICAL ENGINEERING, 2022, 37
  • [29] Nafion Inhibits Polysulfide Crossover in Hybrid Nonaqueous Redox Flow Batteries
    Tyler, J. Landon
    Sacci, Robert L.
    Lehmann, Michelle L.
    Yang, Guang
    Zawodzinski, Thomas A.
    Nanda, Jagjit
    JOURNAL OF PHYSICAL CHEMISTRY C, 2022, 126 (50): : 21188 - 21195
  • [30] Exploring polycyclic aromatic hydrocarbons as an anolyte for nonaqueous redox flow batteries
    Wang, Gongwei
    Huang, Bing
    Liu, Dan
    Zheng, Dong
    Harris, Joshua
    Xue, Janie
    Qu, Deyang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (27) : 13286 - 13293