Environmental Sound Classification using Deep Convolutional Neural Networks and Data Augmentation

被引:0
|
作者
Davis, Nithya [1 ]
Suresh, K. [1 ]
机构
[1] Coll Engn, Dept Elect & Commun Engn, Trivandrum, Kerala, India
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This work is about environmental sound classification by deep convolutional neural networks and data augmentation. Data augmentation is applied to increase the labeled training dataset. Data augmentation process improves the performance of audio classification. In this paper, first we present a strategy for generating a deep convolutional neural network (CNN) framework for environmental sound analysis with Urbansound8K audio dataset. Secondly we analyze the performance of data augmentation methods on Urbansound8K audio dataset and compare the performance of CNN with different data augmentation methodologies. Data augmentation is basically a deformation technique. By this approach we can increase the number of dataset elements into its multiples. Here, compare the performance of different augmentation method to identify which one is the best augmentation technique for environmental sound analysis. Different types of data augmentations were applied to the dataset in the previous works. We introduce a new data augmentation method using LPCC feature.
引用
收藏
页码:41 / 45
页数:5
相关论文
共 50 条
  • [41] Gender and Smile Classification using Deep Convolutional Neural Networks
    Zhang, Kaipeng
    Tan, Lianzhi
    Li, Zhifeng
    Qiao, Yu
    [J]. PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016), 2016, : 739 - 743
  • [42] Classification of crystallization outcomes using deep convolutional neural networks
    Bruno, Andrew E.
    Charbonneau, Patrick
    Newman, Janet
    Snell, Edward H.
    So, David R.
    Vanhoucke, Vincent
    Watkins, Christopher J.
    Williams, Shawn
    Wilson, Julie
    [J]. PLOS ONE, 2018, 13 (06):
  • [43] Melanoma Cancer Classification using Deep Convolutional Neural Networks
    Cadena, Jose M.
    Perez, Noel
    Benitez, Diego
    Grijalva, Felipe
    Flores, Ricardo
    Camacho, Oscar
    Marrero-Ponce, Yovani
    [J]. 2023 IEEE 13TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION SYSTEMS, ICPRS, 2023,
  • [44] Water stress classification using Convolutional Deep Neural Networks
    Aversano, Lerina
    Bernardi, Mario Luca
    Cimitile, Marta
    [J]. JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2022, 28 (03) : 311 - 328
  • [45] AGRICULTURAL HARVESTER SOUND CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS AND SPECTROGRAMS
    Khorasani, Nioosha E.
    Thomas, Gabriel
    Balocco, Simone
    Mann, Danny
    [J]. APPLIED ENGINEERING IN AGRICULTURE, 2022, 38 (02) : 455 - 459
  • [46] Cystoscopy Image Classification Using Deep Convolutional Neural Networks
    Hashemi, Seyyed Mohammadreza
    Hassanpour, Hamid
    Kozegar, Ehsan
    Tan, Tao
    [J]. INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2019, 10 (01): : 193 - 205
  • [47] Lung Sound Classification Using Snapshot Ensemble of Convolutional Neural Networks
    Truc Nguyen
    Pernkopf, Franz
    [J]. 42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20, 2020, : 760 - 763
  • [48] CLASSIFICATION OF DERMOSCOPY PATTERNS USING DEEP CONVOLUTIONAL NEURAL NETWORKS
    Demyanov, Sergey
    Chakravorty, Rajib
    Abedini, Mani
    Halpern, Alan
    Garnavi, Rahil
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 364 - 368
  • [49] Assessment of Asteroid Classification Using Deep Convolutional Neural Networks
    Bacu, Victor
    Nandra, Constantin
    Sabou, Adrian
    Stefanut, Teodor
    Gorgan, Dorian
    [J]. AEROSPACE, 2023, 10 (09)
  • [50] Solar Event Classification Using Deep Convolutional Neural Networks
    Kucuk, Ahmet
    Banda, Juan M.
    Angryk, Rafal A.
    [J]. ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2017, PT I, 2017, 10245 : 118 - 130