Subgradient Method for Nonconvex Nonsmooth Optimization

被引:29
|
作者
Bagirov, A. M. [1 ]
Jin, L. [1 ]
Karmitsa, N. [2 ]
Al Nuaimat, A. [1 ]
Sultanova, N. [1 ]
机构
[1] Univ Ballarat, Sch Sci Informat Technol & Engn, Ballarat, Vic 3353, Australia
[2] Univ Turku, Dept Math, Turku 20014, Finland
关键词
Nonsmooth optimization; Nonconvex optimization; Subgradient method; Bundle method; MEMORY BUNDLE METHOD; MINIMIZATION;
D O I
10.1007/s10957-012-0167-6
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
In this paper, we introduce a new method for solving nonconvex nonsmooth optimization problems. It uses quasisecants, which are subgradients computed in some neighborhood of a point. The proposed method contains simple procedures for finding descent directions and for solving line search subproblems. The convergence of the method is studied and preliminary results of numerical experiments are presented. The comparison of the proposed method with the subgradient and the proximal bundle methods is demonstrated using results of numerical experiments.
引用
收藏
页码:416 / 435
页数:20
相关论文
共 50 条
  • [41] On a globally convergent semismooth* Newton method in nonsmooth nonconvex optimization
    Gfrerer, Helmut
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2025, 91 (01) : 67 - 124
  • [42] Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization
    Ermol'ev, YM
    Norkin, VI
    CYBERNETICS AND SYSTEMS ANALYSIS, 1998, 34 (02) : 196 - 215
  • [43] Linearized Alternating Direction Method with Penalization for Nonconvex and Nonsmooth Optimization
    Wang, Yiyang
    Liu, Risheng
    Song, Xiaoliang
    Su, Zhixun
    THIRTIETH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2016, : 798 - 804
  • [44] Multiple subgradient descent bundle method for convex nonsmooth multiobjective optimization
    Montonen, O.
    Karmitsa, N.
    Makela, M. M.
    OPTIMIZATION, 2018, 67 (01) : 139 - 158
  • [45] Stochastic generalized gradient method for nonconvex nonsmooth stochastic optimization
    Yu. M. Ermol'ev
    V. I. Norkin
    Cybernetics and Systems Analysis, 1998, 34 : 196 - 215
  • [46] A filter proximal bundle method for nonsmooth nonconvex constrained optimization
    Hoseini Monjezi, Najmeh
    Nobakhtian, S.
    JOURNAL OF GLOBAL OPTIMIZATION, 2021, 79 (01) : 1 - 37
  • [47] Constrained Nonconvex Nonsmooth Optimization via Proximal Bundle Method
    Yang Yang
    Liping Pang
    Xuefei Ma
    Jie Shen
    Journal of Optimization Theory and Applications, 2014, 163 : 900 - 925
  • [48] A Simple Proximal Stochastic Gradient Method for Nonsmooth Nonconvex Optimization
    Li, Zhize
    Li, Jian
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [49] An inexact regularized proximal Newton method for nonconvex and nonsmooth optimization
    Ruyu Liu
    Shaohua Pan
    Yuqia Wu
    Xiaoqi Yang
    Computational Optimization and Applications, 2024, 88 : 603 - 641
  • [50] A Triple Stabilized Bundle Method for Constrained Nonconvex Nonsmooth Optimization
    Dembele, Andre
    Ndiaye, Babacar M.
    Ouorou, Adam
    Degla, Guy
    ADVANCED COMPUTATIONAL METHODS FOR KNOWLEDGE ENGINEERING (ICCSAMA 2019), 2020, 1121 : 75 - 87