Multiple subgradient descent bundle method for convex nonsmooth multiobjective optimization

被引:13
|
作者
Montonen, O. [1 ]
Karmitsa, N. [1 ]
Makela, M. M. [1 ]
机构
[1] Univ Turku, Dept Math & Stat, Turku, Finland
基金
芬兰科学院;
关键词
Multiobjective optimization; nonsmooth optimization; descent methods; bundle methods; VECTOR OPTIMIZATION; NEWTONS METHOD; MINIMIZATION;
D O I
10.1080/02331934.2017.1387259
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
The aim of this paper is to propose a new multiple subgradientdescent bundle method for solving unconstrained convex nonsmooth multiobjective optimization problems. Contrary to many existing multiobjective optimization methods, our method treats the objective functions as they are without employing a scalarization in a classical sense. The main idea of this method is to find descent directions for every objective function separately by utilizing the proximal bundle approach, and then trying to form a common descent direction for every objective function. In addition, we prove that the method is convergent and it finds weakly Pareto optimal solutions. Finally, some numerical experiments are considered.
引用
收藏
页码:139 / 158
页数:20
相关论文
共 50 条
  • [1] A DESCENT METHOD FOR NONSMOOTH CONVEX MULTIOBJECTIVE MINIMIZATION
    KIWIEL, KC
    [J]. LARGE SCALE SYSTEMS IN INFORMATION AND DECISION TECHNOLOGIES, 1985, 8 (02): : 119 - 129
  • [2] Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints
    Outi Montonen
    Kaisa Joki
    [J]. Journal of Global Optimization, 2018, 72 : 403 - 429
  • [3] Bundle-based descent method for nonsmooth multiobjective DC optimization with inequality constraints
    Montonen, Outi
    Joki, Kaisa
    [J]. JOURNAL OF GLOBAL OPTIMIZATION, 2018, 72 (03) : 403 - 429
  • [4] A Descent Method for Nonsmooth Multiobjective Optimization in Hilbert Spaces
    Sonntag, Konstantin
    Gebken, Bennet
    Mueller, Georg
    Peitz, Sebastian
    Volkwein, Stefan
    [J]. JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2024, : 455 - 487
  • [5] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Ya. I. Alber
    A. N. Iusem
    M. V. Solodov
    [J]. Mathematical Programming, 1998, 81 : 23 - 35
  • [6] On the projected subgradient method for nonsmooth convex optimization in a Hilbert space
    Alber, YI
    Iusem, AN
    Solodov, MV
    [J]. MATHEMATICAL PROGRAMMING, 1998, 81 (01) : 23 - 35
  • [7] Spectral projected subgradient method for nonsmooth convex optimization problems
    Krejic, Natasa
    Jerinkic, Natasa Krklec
    Ostojic, Tijana
    [J]. NUMERICAL ALGORITHMS, 2023, 93 (01) : 347 - 365
  • [8] Spectral projected subgradient method for nonsmooth convex optimization problems
    Nataša Krejić
    Nataša Krklec Jerinkić
    Tijana Ostojić
    [J]. Numerical Algorithms, 2023, 93 : 347 - 365
  • [9] A method of centers with approximate subgradient linearizations for nonsmooth convex optimization
    Kiwiel, Krzysztof C.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2007, 18 (04) : 1467 - 1489
  • [10] Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization
    Makela, Marko M.
    Karmitsa, Napsu
    Wilppu, Outi
    [J]. MATHEMATICAL MODELING AND OPTIMIZATION OF COMPLEX STRUCTURES, 2016, 40 : 191 - 204