Sensitivity and uncertainty analysis of the fractional neutron point kinetics equations

被引:25
|
作者
Espinosa-Paredes, G. [1 ]
Polo-Labarrios, M. -A. [1 ,2 ]
Diaz-Gonzalez, L. [3 ]
Vazquez-Rodriguez, A. [1 ]
Espinosa-Martinez, E. -G. [1 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Area Ingn Recursos Energet, Mexico City 09340, DF, Mexico
[2] Univ Autonoma Mexico, Dept Sistemas Energet, Fac Ingn, Mexico City 04510, DF, Mexico
[3] Univ Autenoma Estado Morelos, Fac Ciencias, Cuernavaca 62209, Morelos, Mexico
关键词
Telegrapher's equation; Anomalous diffusion exponent; Sensitivity analysis; Monte Carlo simulation;
D O I
10.1016/j.anucene.2011.11.023
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
The aim of the present work is to evaluate the sensitivity and uncertainty of the anomalous diffusion coefficient in the Fractional Neutron Point Kinetics (FNPK) equations. This analysis was carried out through Monte Carlo simulations of sizes up to 65,000; the size of 50,000 was considered as valid for routine applications. The sensitivity was evaluated in terms of 99% confidence intervals of the mean to understand the range of mean values that may represent the entire statistical population of performance variables. The regression analysis with anomalous diffusion coefficient as the predictor variable showed statistically valid quadratic relationship for neutronic density and the delayed neutron precursor concentration. The uncertainties were propagated as follows: in a 1% change in the anomalous diffusion exponent the responses for neutron density, and precursor density changed by 0.017% and 0.0000125% for short times, and for long times by 0.012% and 0.000267%, respectively. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:169 / 174
页数:6
相关论文
共 50 条
  • [21] Numerical solution of fractional neutron point kinetics model in nuclear reactor
    Nowak, Tomasz Karol
    Duzinkiewicz, Kazimierz
    Piotrowski, Robert
    ARCHIVES OF CONTROL SCIENCES, 2014, 24 (02): : 129 - 154
  • [22] Time-space fractional neutron point kinetics: Theory and simulations
    Espinosa-Martinez, E-G
    Francois, Juan-Luis
    Martin-del-Campo, Cecilia
    Moghaddam, Nader Maleki
    ANNALS OF NUCLEAR ENERGY, 2020, 143
  • [23] NEUTRON POINT KINETICS MODEL WITH A DISTRIBUTED-ORDER FRACTIONAL DERIVATIVE
    Godinez, F. A.
    Fernandez-Anaya, G.
    Quezada-Garcia, S.
    Quezada-Tellez, L. A.
    Polo-Labarrios, M. A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [24] Lie group analysis of the point-reactor neutron kinetics equations for various reactivity models
    O'Rourke, Patrick F.
    Ramsey, Scott D.
    Temple, Brian A.
    ANNALS OF NUCLEAR ENERGY, 2021, 160
  • [25] Picard iteration and Pade approximations for stiff fractional point kinetics equations
    Nahla, Abdallah A.
    Hemeda, A. A.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 293 : 72 - 80
  • [26] Fractional neutron point kinetics model for reactivity transients of the NuScale and comparison with the classical kinetics approach
    Vazquez-Rodriguez, R.
    Sanchez-Mora, H.
    Polo-Labarrios, M. A.
    Ortiz-Villafuerte, J.
    Lugo-Leyte, R.
    PROGRESS IN NUCLEAR ENERGY, 2024, 175
  • [27] Adjusted mean generation time parameter in the neutron point kinetics equations
    Diniz, Rodrigo Costa
    Goncalves, Alessandro da Cruz
    de Souza da Rosa, Felipe Siqueira
    ANNALS OF NUCLEAR ENERGY, 2019, 133 : 338 - 346
  • [28] A new integral method for solving the point reactor neutron kinetics equations
    Li, Haofeng
    Chen, Wenzhen
    Luo, Lei
    Zhu, Qian
    ANNALS OF NUCLEAR ENERGY, 2009, 36 (04) : 427 - 432
  • [29] On the fractional differential equations with uncertainty
    Arshad, Sadia
    Lupulescu, Vasile
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (11) : 3685 - 3693
  • [30] The neutron point kinetics equation: Suppression of fractional derivative effects by temperature feedback
    Schramm, M.
    Bodmann, B. E. J.
    Alvim, A. C. M.
    Vilhena, M. T.
    ANNALS OF NUCLEAR ENERGY, 2016, 87 : 479 - 485