The neutron point kinetics equation: Suppression of fractional derivative effects by temperature feedback

被引:17
|
作者
Schramm, M. [1 ]
Bodmann, B. E. J. [1 ]
Alvim, A. C. M. [2 ]
Vilhena, M. T. [1 ]
机构
[1] Univ Fed Rio Grande do Sul, PROMEC, Porto Alegre, RS, Brazil
[2] Univ Fed Rio de Janeiro, COPPE, Ilha Fundao, BR-21945 Rio De Janeiro, RJ, Brazil
关键词
Neutron point kinetics; Fractional derivative; Temperature feedback;
D O I
10.1016/j.anucene.2015.10.003
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
A Riemann-Liouville fractional derivative point kinetics model is discussed with additional temperature feedback. The choice for the Riemann-Liouville definition is justified by preservation of homogeneity and integral transform properties. An analytical representation for the time dependent neutron density is derived for any fractional order and any relaxation time scale by the use of a recursive decomposition scheme. Without temperature effects scenarios with constant positive and negative, linear and oscillatory time dependent reactivity are presented. The case with additional temperature effects is solved and results are presented. The latter case showed that for a selection of fractional derivative parameter effects on the neutron density are completely suppressed. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:479 / 485
页数:7
相关论文
共 50 条
  • [1] Fractional neutron point kinetics equation with Newtonian temperature feedback effects
    Espinosa-Paredes, G.
    del Valle Gallegos, E.
    Nunez-Carrera, A.
    Polo-Labarrios, M. -A.
    Espinosa-Martinez, E. -G.
    Vazquez-Rodriguez, A.
    PROGRESS IN NUCLEAR ENERGY, 2014, 73 : 96 - 101
  • [2] ON THE SOLUTION OF THE NONLINEAR FRACTIONAL NEUTRON POINT-KINETICS EQUATION WITH NEWTONIAN TEMPERATURE FEEDBACK REACTIVITY
    Patra, A.
    Ray, S. Saha
    NUCLEAR TECHNOLOGY, 2015, 189 (01) : 103 - 109
  • [3] Analysis of the fractional neutron point kinetics (FNPK) equation
    Espinosa-Paredes, Gilberto
    Polo-Labarrios, Marco-A.
    ANNALS OF NUCLEAR ENERGY, 2016, 92 : 363 - 368
  • [4] Parameter analysis of the neutron point kinetics equations with feedback temperature effects
    El Tokhy, Mohamed S.
    Mahmoud, Imbaby I.
    ANNALS OF NUCLEAR ENERGY, 2014, 68 : 228 - 233
  • [5] Assessment of the fractional neutron point kinetic equation to simulate core transients with Newtonian temperature feedback
    Polo-Labarrios, M. A.
    Quezada-Garcia, S.
    Espinosa-Paredes, G.
    Ortiz-Villafuerte, J.
    ANNALS OF NUCLEAR ENERGY, 2020, 138
  • [6] NEUTRON POINT KINETICS MODEL WITH A DISTRIBUTED-ORDER FRACTIONAL DERIVATIVE
    Godinez, F. A.
    Fernandez-Anaya, G.
    Quezada-Garcia, S.
    Quezada-Tellez, L. A.
    Polo-Labarrios, M. A.
    FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY, 2024,
  • [7] Solution of the fractional neutron point kinetics equations considering time derivative of the reactivity
    Hamada, Yasser Mohamed
    PROGRESS IN NUCLEAR ENERGY, 2017, 98 : 153 - 166
  • [8] Fractional neutron point kinetic equation with ramp and sinusoidal reactivity effects
    Polo-Labarrios, M. A.
    Espinosa-Martinez, E. -G.
    Quezada-Garcia, S.
    Varela-Ham, Juan R.
    Espinosa-Paredes, G.
    ANNALS OF NUCLEAR ENERGY, 2014, 72 : 90 - 94
  • [9] On the stability of fractional neutron point kinetics (FNPK)
    Espinosa-Paredes, Gilberto
    Cazares-Ramirez, Ricardo-I.
    Francois, Juan-Luis
    Martin-del-Campo, Cecilia
    APPLIED MATHEMATICAL MODELLING, 2017, 45 : 505 - 515
  • [10] Analysis of Fractional-order Point Reactor Kinetics Model with Adiabatic Temperature Feedback for Nuclear Reactor with Subdiffusive Neutron Transport
    Vyawahare, Vishwesh A.
    Nataraj, P. S. V.
    SIMULATION AND MODELING METHODOLOGIES, TECHNOLOGIES AND APPLICATIONS, SIMULTECH 2014, 2015, 402 : 153 - 172