Application of spaces of subspheres to conformal invariants of curves and canal surfaces

被引:2
|
作者
Langevin, Remi [1 ]
O'Hara, Jun [2 ]
Sakata, Shigehiro [2 ]
机构
[1] Univ Bourgogne, UMR CNRS 5584, Inst Math Bourgogne, F-21078 Dijon, France
[2] Tokyo Metropolitan Univ, Dept Math, Tokyo 1920397, Japan
关键词
Mobius geometry; canal surface; conformal arc-length; conformal curvature; conformal torsion; osculating circle; osculating sphere; CURVATURES;
D O I
10.4064/ap108-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review some techniques from the Mobius geometry of curves and surfaces in the 3-sphere, consider canal surfaces using their characteristic circles, and express the conformal curvature, and conformal torsion, of a vertex-free space curve in terms of its corresponding curve of osculating circles, and osculating spheres, respectively. We accomplish all of this strictly within the framework of Mobius geometry, and compare our results with the literature. Finally, we show how our formulation allows for the re-expression of the conformal invariants in terms of standard Euclidean invariants.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 50 条
  • [31] Conformal field theories and compact curves in moduli spaces
    Donagi, Ron
    Morrison, David R.
    JOURNAL OF HIGH ENERGY PHYSICS, 2018, (05):
  • [32] INTERPOLATION BY CONFORMAL MINIMAL SURFACES AND DIRECTED HOLOMORPHIC CURVES
    Alarcon, Antonio
    Castro-Infantes, Ildefonso
    ANALYSIS & PDE, 2019, 12 (02): : 561 - 604
  • [33] Yamabe Invariants, Homogeneous Spaces, and Rational Complex Surfaces
    Lebrun, Claude
    SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2023, 19
  • [34] Canal surfaces as Bezier curves using mass points
    Garnier, Lionel
    Becar, Jean-Paul
    Druoton, Lucie
    COMPUTER AIDED GEOMETRIC DESIGN, 2017, 54 : 15 - 34
  • [35] Geometric characterizations of canal surfaces with Frenet center curves
    Qian, Jinhua
    Liu, Jie
    Fu, Xueshan
    Jung, Seoung Dal
    AIMS MATHEMATICS, 2021, 6 (09): : 9476 - 9490
  • [36] Invariants of Homotopy Classes of Curves and Graphs on 2-Surfaces
    Manturov V.O.
    Fedoseev D.A.
    Journal of Mathematical Sciences, 2015, 206 (6) : 668 - 678
  • [37] Geometric Invariants of Normal Curves under Conformal Transformation in E3
    Lone, Mohamd Saleem
    TAMKANG JOURNAL OF MATHEMATICS, 2022, 53 (01): : 75 - 87
  • [38] CONFORMAL FIELD-THEORY ON SURFACES WITH BOUNDARIES AND NONDIAGONAL MODULAR INVARIANTS
    BERN, Z
    DUNBAR, DC
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1990, 5 (24): : 4629 - 4638
  • [39] ON THE QUASICONFORMAL DEFORMATION OF OPEN RIEMANN SURFACES AND VARIATIONS OF SOME CONFORMAL INVARIANTS
    SHIGA, H
    JOURNAL OF MATHEMATICS OF KYOTO UNIVERSITY, 1982, 22 (03): : 463 - 480
  • [40] Spaces of Curves with Constrained Curvature on Hyperbolic Surfaces
    Saldanha, Nicolau C.
    Zuhlke, Pedro
    INDIANA UNIVERSITY MATHEMATICS JOURNAL, 2020, 69 (04) : 1403 - 1443