Application of spaces of subspheres to conformal invariants of curves and canal surfaces

被引:2
|
作者
Langevin, Remi [1 ]
O'Hara, Jun [2 ]
Sakata, Shigehiro [2 ]
机构
[1] Univ Bourgogne, UMR CNRS 5584, Inst Math Bourgogne, F-21078 Dijon, France
[2] Tokyo Metropolitan Univ, Dept Math, Tokyo 1920397, Japan
关键词
Mobius geometry; canal surface; conformal arc-length; conformal curvature; conformal torsion; osculating circle; osculating sphere; CURVATURES;
D O I
10.4064/ap108-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We review some techniques from the Mobius geometry of curves and surfaces in the 3-sphere, consider canal surfaces using their characteristic circles, and express the conformal curvature, and conformal torsion, of a vertex-free space curve in terms of its corresponding curve of osculating circles, and osculating spheres, respectively. We accomplish all of this strictly within the framework of Mobius geometry, and compare our results with the literature. Finally, we show how our formulation allows for the re-expression of the conformal invariants in terms of standard Euclidean invariants.
引用
收藏
页码:109 / 131
页数:23
相关论文
共 50 条
  • [21] Recognizing surfaces using curve invariants and differential properties of curves and surfaces
    Keren, D
    Rivlin, E
    Shimshoni, I
    Weiss, I
    1998 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, VOLS 1-4, 1998, : 3375 - 3381
  • [22] Blending canal surfaces based on PH curves
    Xu, CD
    Chen, FL
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2005, 20 (03) : 389 - 395
  • [23] Blending Canal Surfaces Based on PH Curves
    Chen-Dong Xu
    Fa-Lai Chen
    Journal of Computer Science and Technology, 2005, 20 : 389 - 395
  • [24] Parameter spaces for curves on surfaces and enumeration of rational curves
    Caporaso, L
    Harris, J
    COMPOSITIO MATHEMATICA, 1998, 113 (02) : 155 - 208
  • [25] Computations of quandle cocycle invariants of knotted curves and surfaces
    Carter, JS
    Jelsovsky, D
    Kamada, S
    Saito, M
    ADVANCES IN MATHEMATICS, 2001, 157 (01) : 36 - 94
  • [26] Generalized evolutes, vertices and conformal invariants of curves in Rn+1
    Romero-Fuster, MC
    Sanabria-Codesal, E
    INDAGATIONES MATHEMATICAE-NEW SERIES, 1999, 10 (02): : 297 - 305
  • [27] Conformal invariants of curves via those for inscribed polygons with circular edges
    Dorn, Harald
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2024, 57 (23)
  • [28] Conformal invariants and spherical contacts of surfaces in a"e4
    Romero-Fuster, M. C.
    Sanabria-Codesal, E.
    REVISTA MATEMATICA COMPLUTENSE, 2013, 26 (01): : 215 - 240
  • [29] Conformal invariants for multiply connected surfaces: Application to landmark curve-based brain morphometry analysis
    Shi, Jie
    Zhang, Wen
    Tang, Miao
    Caselli, Richard J.
    Wang, Yalin
    MEDICAL IMAGE ANALYSIS, 2017, 35 : 517 - 529
  • [30] Conformal field theories and compact curves in moduli spaces
    Ron Donagi
    David R. Morrison
    Journal of High Energy Physics, 2018