Rethinking Bayesian Deep Learning Methods for Semi-Supervised Volumetric Medical Image Segmentation

被引:11
|
作者
Wang, Jianfeng [1 ]
Lukasiewicz, Thomas [1 ]
机构
[1] Univ Oxford, Dept Comp Sci, Oxford, England
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.1109/CVPR52688.2022.00028
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Recently, several Bayesian deep learning methods have been proposed for semi-supervised medical image segmentation. Although they have achieved promising results on medical benchmarks, some problems are still existing. Firstly, their overall architectures belong to the discriminative models, and hence, in the early stage of training, they only use labeled data for training, which might make them overfit to the labeled data. Secondly, in fact, they are only partially based on Bayesian deep learning, as their overall architectures are not designed under the Bayesian framework. However, unifying the overall architecture under the Bayesian perspective can make the architecture have a rigorous theoretical basis, so that each part of the architecture can have a clear probabilistic interpretation. Therefore, to solve the problems, we propose a new generative Bayesian deep learning (GBDL) architecture. GBDL belongs to the generative models, whose target is to estimate the joint distribution of input medical volumes and their corresponding labels. Estimating the joint distribution implicitly involves the distribution of data, so both labeled and unlabeled data can be utilized in the early stage of training, which alleviates the potential overfitting problem. Besides, GBDL is completely designed under the Bayesian framework, and thus we give its full Bayesian formulation, which lays a theoretical probabilistic foundation for our architecture. Extensive experiments show that our GBDL outperforms previous state-of-the-art methods in terms of four commonly used evaluation indicators on three public medical datasets.
引用
收藏
页码:182 / 190
页数:9
相关论文
共 50 条
  • [21] ASDNet: Attention Based Semi-supervised Deep Networks for Medical Image Segmentation
    Nie, Dong
    Gao, Yaozong
    Wang, Li
    Shen, Dinggang
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT IV, 2018, 11073 : 370 - 378
  • [22] Decoupled Consistency for Semi-supervised Medical Image Segmentation
    Chen, Faquan
    Fei, Jingjing
    Chen, Yaqi
    Huang, Chenxi
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 551 - 561
  • [23] Semi-supervised Medical Image Segmentation with Confidence Calibration
    Xu, Qisen
    Wu, Qian
    Hu, Yiqiu
    Jin, Bo
    Hu, Bin
    Zhu, Fengping
    Li, Yuxin
    Wang, Xiangfeng
    [J]. 2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [24] ISDNet: Importance Guided Semi-supervised Adversarial Learning for Medical Image Segmentation
    Ning, Qingtian
    Zhao, Xu
    Qian, Dahong
    [J]. IMAGE AND GRAPHICS, ICIG 2019, PT II, 2019, 11902 : 459 - 470
  • [26] Model-Heterogeneous Semi-Supervised Federated Learning for Medical Image Segmentation
    Ma, Yuxi
    Wang, Jiacheng
    Yang, Jing
    Wang, Liansheng
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (05) : 1804 - 1815
  • [27] EVIL: EVIDENTIAL INFERENCE LEARNING FOR TRUSTWORTHY SEMI-SUPERVISED MEDICAL IMAGE SEGMENTATION
    Chen, Yingyu
    Yang, Ziyuan
    Shen, Chenyu
    Wang, Zhiwen
    Qin, Yang
    Zhang, Yi
    [J]. 2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [28] Correlation-Aware Mutual Learning for Semi-supervised Medical Image Segmentation
    Gao, Shengbo
    Zhang, Ziji
    Ma, Jiechao
    Li, Zihao
    Zhang, Shu
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2023, PT I, 2023, 14220 : 98 - 108
  • [29] Combining contrastive learning and shape awareness for semi-supervised medical image segmentation
    Chen, Yaqi
    Chen, Faquan
    Huang, Chenxi
    [J]. EXPERT SYSTEMS WITH APPLICATIONS, 2024, 242
  • [30] Semi-supervised Medical Image Segmentation via Learning Consistency Under Transformations
    Bortsova, Gerda
    Dubost, Florian
    Hogeweg, Laurens
    Katramados, Ioannis
    de Bruijne, Marleen
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2019, PT VI, 2019, 11769 : 810 - 818