Curvature properties of φ-null Osserman Lorentzian S-manifolds

被引:1
|
作者
Brunetti, Letizia [1 ]
Caldarella, Angelo V. [1 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
来源
关键词
Osserman condition; Jacobi operator; Lorentzian S-manifold; Lorentz manifold; FRAMED F-MANIFOLDS; CONJECTURE; SPACES; BUNDLES;
D O I
10.2478/s11533-013-0331-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the phi-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use it to obtain an algebraic decomposition for the Riemannian curvature tensor of phi-null Osserman Lorentzian S-manifolds.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 50 条
  • [11] S-Manifolds Versus Indefinite S-Manifolds and Local Decomposition Theorems
    Brunetti, Letizia
    Pastore, Anna Maria
    INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY, 2016, 9 (01): : 1 - 8
  • [12] LORENTZIAN MANIFOLDS WITH NONPOSITIVE CURVATURE
    FLAHERTY, FJ
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 21 (01): : A207 - A208
  • [13] On the structure and symmetry properties of almost S-manifolds
    Dileo, G
    Lotta, A
    GEOMETRIAE DEDICATA, 2005, 110 (01) : 191 - 211
  • [14] Lorentzian manifolds with no null conjugate points
    Gutiérrez, M
    Palomo, FJ
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2004, 137 : 363 - 375
  • [15] Null hypersurfaces in Lorentzian manifolds with the null energy condition
    Akamine, Shintaro
    Honda, Atsufumi
    Umehara, Masaaki
    Yamada, Kotaro
    JOURNAL OF GEOMETRY AND PHYSICS, 2020, 155
  • [16] Compact null hypersurfaces in Lorentzian manifolds
    Atindogbe, C.
    Gutierrez, M.
    Hounnonkpe, R.
    ADVANCES IN GEOMETRY, 2021, 21 (02) : 251 - 263
  • [17] COMPACT QUADRATIC S-MANIFOLDS
    LEDGER, AJ
    PETTITT, RB
    COMMENTARII MATHEMATICI HELVETICI, 1976, 51 (01) : 105 - 131
  • [18] ON SLANT CURVES IN S-MANIFOLDS
    Guvenc, Saban
    Ozgur, Cihan
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2018, 33 (01): : 293 - 303
  • [20] Lorentzian manifolds and scalar curvature invariants
    Coley, Alan
    Hervik, Sigbjorn
    Pelavas, Nicos
    CLASSICAL AND QUANTUM GRAVITY, 2010, 27 (10)