Curvature properties of φ-null Osserman Lorentzian S-manifolds

被引:1
|
作者
Brunetti, Letizia [1 ]
Caldarella, Angelo V. [1 ]
机构
[1] Univ Bari, Dept Math, I-70125 Bari, Italy
来源
关键词
Osserman condition; Jacobi operator; Lorentzian S-manifold; Lorentz manifold; FRAMED F-MANIFOLDS; CONJECTURE; SPACES; BUNDLES;
D O I
10.2478/s11533-013-0331-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the phi-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds and we use it to obtain an algebraic decomposition for the Riemannian curvature tensor of phi-null Osserman Lorentzian S-manifolds.
引用
收藏
页码:97 / 113
页数:17
相关论文
共 50 条
  • [41] LORENTZIAN MANIFOLDS: A CHARACTERIZATION WITH SEMICONFORMAL CURVATURE TENSOR
    De, Uday Chand
    Dey, Chiranjib
    COMMUNICATIONS OF THE KOREAN MATHEMATICAL SOCIETY, 2019, 34 (03): : 911 - 920
  • [42] Hypersurfaces of prescribed mean curvature in Lorentzian manifolds
    Claus Gerhardt
    Mathematische Zeitschrift, 2000, 235 : 83 - 97
  • [43] Hypersurfaces of prescribed scalar curvature in Lorentzian manifolds
    Gerhardt, C
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2003, 554 : 157 - 199
  • [44] Curvature homogeneous Lorentzian three-manifolds
    Calvaruso, Giovanni
    ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 2009, 36 (01) : 1 - 17
  • [45] Non-compact quadratic s-manifolds
    Tsagas G.F.
    Xenos P.J.
    Journal of Geometry, 1999, 65 (1-2) : 200 - 207
  • [46] On Slant Magnetic Curves in S-manifolds
    Şaban Güvenç
    Cihan Özgür
    Journal of Nonlinear Mathematical Physics, 2019, 26 : 536 - 554
  • [47] On Slant Magnetic Curves in S-manifolds
    Guvenc, Saban
    Ozgur, Cihan
    JOURNAL OF NONLINEAR MATHEMATICAL PHYSICS, 2019, 26 (04) : 536 - 554
  • [48] Legendrian foliations on almost S-manifolds
    Cappelletti Montano, Beniamino
    BALKAN JOURNAL OF GEOMETRY AND ITS APPLICATIONS, 2005, 10 (02): : 11 - 32
  • [49] Some slant submanifolds of S-manifolds
    Alfonso Carriazo
    Luis M. Fernández
    María Belén Hans-Uber
    Acta Mathematica Hungarica, 2005, 107 : 267 - 285
  • [50] NULL HYPERSURFACES EVOLVED BY THEIR MEAN CURVATURE IN A LORENTZIAN MANIFOLD
    Massamba, Fortune
    Ssekajja, Samuel
    COLLOQUIUM MATHEMATICUM, 2019, 157 (01) : 83 - 106