Fractional Fokker-Planck dynamics:: Numerical algorithm and simulations

被引:91
|
作者
Heinsalu, E
Patriarca, M
Goychuk, I
Schmid, G
Hänggi, P
机构
[1] Univ Augsburg, Inst Phys, D-86135 Augsburg, Germany
[2] Univ Tartu, Inst Theoret Phys, EE-51010 Tartu, Estonia
来源
PHYSICAL REVIEW E | 2006年 / 73卷 / 04期
关键词
D O I
10.1103/PhysRevE.73.046133
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Anomalous transport in a tilted periodic potential is investigated numerically within the framework of the fractional Fokker-Planck dynamics via the underlying continuous-time random walk. An efficient numerical algorithm is developed which is applicable for an arbitrary potential. This algorithm is then applied to investigate the fractional current and the corresponding nonlinear mobility in different washboard potentials. Normal and fractional diffusion are compared through their time evolution of the probability density in state space. Moreover, we discuss the stationary probability density of the fractional current values.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] PERTURBATION EXPANSION FOR THE FOKKER-PLANCK DYNAMICS
    LANGOUCHE, F
    ROEKAERTS, D
    TIRAPEGUI, E
    PROGRESS OF THEORETICAL PHYSICS, 1979, 61 (06): : 1617 - 1628
  • [42] Large lattice fractional Fokker-Planck equation
    Tarasov, Vasily E.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2014,
  • [43] A fractional Fokker-Planck model for anomalous diffusion
    Anderson, Johan
    Kim, Eun-jin
    Moradi, Sara
    PHYSICS OF PLASMAS, 2014, 21 (12)
  • [44] NUMERICAL-SOLUTION OF THE FOKKER-PLANCK EQUATION - A FAST AND ACCURATE ALGORITHM
    PALLESCHI, V
    SARRI, F
    MARCOZZI, G
    TORQUATI, MR
    PHYSICS LETTERS A, 1990, 146 (7-8) : 378 - 386
  • [45] Numerical Approximations for the Fractional Fokker-Planck Equation with Two-Scale Diffusion
    Sun, Jing
    Deng, Weihua
    Nie, Daxin
    JOURNAL OF SCIENTIFIC COMPUTING, 2022, 91 (02)
  • [46] Numerical algorithms for the time-space tempered fractional Fokker-Planck equation
    Sun, Xiaorui
    Zhao, Fengqun
    Chen, Shuiping
    ADVANCES IN DIFFERENCE EQUATIONS, 2017,
  • [47] NUMERICAL SOLUTION OF FRACTIONAL FOKKER-PLANCK EQUATION USING THE OPERATIONAL COLLOCATION METHOD
    Aminataei, A.
    Vanani, S. Karimi
    APPLIED AND COMPUTATIONAL MATHEMATICS, 2013, 12 (01) : 33 - 43
  • [48] Numerical solutions for solving model time-fractional Fokker-Planck equation
    Mahdy, Amr M. S.
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2021, 37 (02) : 1120 - 1135
  • [49] A New Numerical Method for Solving Nonlinear Fractional Fokker-Planck Differential Equations
    Guo, BeiBei
    Jiang, Wei
    Zhang, ChiPing
    JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2017, 12 (05):
  • [50] NUMERICAL SOLUTION OF THE TIME-FRACTIONAL FOKKER-PLANCK EQUATION WITH GENERAL FORCING
    Le, Kim Ngan
    McLean, William
    Mustapha, Kassem
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2016, 54 (03) : 1763 - 1784