Classical verification of quantum circuits containing few basis changes

被引:7
|
作者
Demarie, Tommaso F. [1 ]
Ouyang, Yingkai [1 ]
Fitzsimons, Joseph F. [1 ]
机构
[1] Singapore Univ Technol & Design, 8 Somapah Rd, Singapore 487372, Singapore
基金
新加坡国家研究基金会;
关键词
D O I
10.1103/PhysRevA.97.042319
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We consider the task of verifying the correctness of quantum computation for a restricted class of circuits which contain at most two basis changes. This contains circuits giving rise to the second level of the Fourier hierarchy, the lowest level for which there is an established quantum advantage. We show that when the circuit has an outcome with probability at least the inverse of some polynomial in the circuit size, the outcome can be checked in polynomial time with bounded error by a completely classical verifier. This verification procedure is based on random sampling of computational paths and is only possible given knowledge of the likely outcome.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Distance Verification for Classical and Quantum LDPC Codes
    Dumer, Ilya
    Kovalev, Alexey A.
    Pryadko, Leonid P.
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2017, 63 (07) : 4675 - 4686
  • [42] Classical Verification of Quantum Computations with Efficient Verifier
    Chia, Nai-Hui
    Chung, Kai-Min
    Yamakawa, Takashi
    THEORY OF CRYPTOGRAPHY, TCC 2020, PT III, 2020, 12552 : 181 - 206
  • [43] Towards experimental classical verification of quantum computation
    Stricker, Roman
    Carrasco, Jose
    Ringbauer, Martin
    Postler, Lukas
    Meth, Michael
    Edmunds, Claire
    Schindler, Philipp
    Blatt, Rainer
    Zoller, Peter
    Kraus, Barbara
    Monz, Thomas
    QUANTUM SCIENCE AND TECHNOLOGY, 2024, 9 (02)
  • [44] A Birkhoff Connection Between Quantum Circuits and Linear Classical Reversible Circuits
    De Vos, Alexis
    De Baerdemacker, Stijn
    REVERSIBLE COMPUTATION (RC 2019), 2019, 11497 : 23 - 33
  • [45] An efficient verification of quantum circuits under a practical restriction
    Yamashita, Shigeru
    Minato, Shin-ichi
    Miller, D. Michael
    2008 IEEE 8TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY, VOLS 1 AND 2, 2008, : 873 - +
  • [46] Rotational abstractions for verification of quantum Fourier transform circuits
    Govindankutty, Arun
    Srinivasan, Sudarshan K.
    Mathure, Nimish
    IET QUANTUM COMMUNICATION, 2023, 4 (02): : 84 - 92
  • [47] An efficient functional verification method for quantum Boolean circuits
    Wang, SA
    Lu, CY
    Kuo, SY
    2004 4TH IEEE CONFERENCE ON NANOTECHNOLOGY, 2004, : 611 - 613
  • [48] An XQDD-based verification method for quantum circuits
    Wang, Shiou-An
    Lu, Chin-Yung
    Tsai, I-Ming
    Kuo, Sy-Yen
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2008, E91A (02) : 584 - 594
  • [49] CLASSICAL PREFERABLE BASIS IN QUANTUM-MECHANICS
    MARKOV, MA
    MUKHANOV, VF
    PHYSICS LETTERS A, 1988, 127 (05) : 251 - 254
  • [50] QWIRE Practice: Formal Verification of Quantum Circuits in Coq
    Rand, Robert
    Paykin, Jennifer
    Zdancewic, Steve
    ELECTRONIC PROCEEDINGS IN THEORETICAL COMPUTER SCIENCE, 2018, (266): : 119 - 132