Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

被引:0
|
作者
Zhang, Ying [1 ,2 ,3 ]
Xu, Yuehong [1 ,2 ,3 ]
Tian, Chunxiu [4 ]
Xu, Quan [1 ,2 ,3 ,4 ]
Zhang, Xueqian [1 ,2 ,3 ]
Li, Yanfeng [1 ,2 ,3 ]
Zhang, Xixiang [4 ]
Han, Jiaguang [1 ,2 ,3 ]
Zhang, Weili [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
[3] Minist Educ China, Key Lab Optoelect Informat & Technol Tianjin, Tianjin 300072, Peoples R China
[4] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[5] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
关键词
Spoof surface plasmon polariton; waveguide component; corrugated metal surface;
D O I
10.1117/12.2295257
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 mu m was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Terahertz electromagnetic fences on a graphene surface plasmon polariton platform
    Wu, Xidong
    Guo, Xiang
    SCIENTIFIC REPORTS, 2017, 7
  • [42] Terahertz electromagnetic fences on a graphene surface plasmon polariton platform
    Xidong Wu
    Xiang Guo
    Scientific Reports, 7
  • [43] Terahertz surface plasmon polariton waveguiding with periodic metallic cylinders
    Zhang, Ying
    Li, Shaoxian
    Xu, Quan
    Tian, Chunxiu
    Gu, Jianqiang
    Li, Yanfeng
    Tian, Zhen
    Ouyang, Chunmei
    Han, Jiaguang
    Zhang, Weili
    OPTICS EXPRESS, 2017, 25 (13): : 14397 - 14405
  • [44] Rainbow trapping of surface plasmon polariton waves in metal-insulator-metal graded grating waveguide
    Zeng, Chao
    Cui, Yudong
    OPTICS COMMUNICATIONS, 2013, 290 : 188 - 191
  • [45] Decay and propagation properties of symmetric surface plasmon polariton mode in metal-insulator-metal waveguide
    Yang, Hongyan
    Li, Jianqing
    Xiao, Gongli
    OPTICS COMMUNICATIONS, 2017, 395 : 159 - 162
  • [46] Symmetric and antisymmetric surface plasmon polariton solitons in a metal-dielectric-metal waveguide with incoherent pumping
    Gu, Zhenning
    Liu, Qi
    Zhou, Yong
    Tan, Chaohua
    EUROPEAN PHYSICAL JOURNAL D, 2020, 74 (04):
  • [47] Symmetric and antisymmetric surface plasmon polariton solitons in a metal-dielectric-metal waveguide with incoherent pumping
    Zhenning Gu
    Qi Liu
    Yong Zhou
    Chaohua Tan
    The European Physical Journal D, 2020, 74
  • [48] Terahertz surface plasmon polaritons in textured metal surfaces formed by square arrays of metallic pillars
    Gao, Zhen
    Shen, Linfang
    Wu, Jin-Jei
    Yang, Tzong-Jer
    Zheng, Xiaodong
    OPTICS COMMUNICATIONS, 2012, 285 (08) : 2076 - 2080
  • [49] Spoof surface plasmon polariton waveguide with spiral structure units
    Qian Qiao
    Yong Xu
    Liangcai Zhang
    Weiwen Li
    Zhiyuan Shi
    The European Physical Journal Plus, 136
  • [50] Compact spoof surface plasmon polariton waveguide with asymmetric serrations
    An, Cheng
    Xiao, Zhenning
    Li, Weiwen
    Wang, Yu
    JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2022, 33 (28) : 22300 - 22308