Corrugated metal surface with pillars for terahertz surface plasmon polariton waveguide components

被引:0
|
作者
Zhang, Ying [1 ,2 ,3 ]
Xu, Yuehong [1 ,2 ,3 ]
Tian, Chunxiu [4 ]
Xu, Quan [1 ,2 ,3 ,4 ]
Zhang, Xueqian [1 ,2 ,3 ]
Li, Yanfeng [1 ,2 ,3 ]
Zhang, Xixiang [4 ]
Han, Jiaguang [1 ,2 ,3 ]
Zhang, Weili [1 ,2 ,3 ,5 ]
机构
[1] Tianjin Univ, Ctr Terahertz Waves, Tianjin 300072, Peoples R China
[2] Tianjin Univ, Coll Precis Instrument & Optoelect Engn, Tianjin 300072, Peoples R China
[3] Minist Educ China, Key Lab Optoelect Informat & Technol Tianjin, Tianjin 300072, Peoples R China
[4] King Abdullah Univ Sci & Technol, Div Phys Sci & Engn, Thuwal 239556900, Saudi Arabia
[5] Oklahoma State Univ, Sch Elect & Comp Engn, Stillwater, OK 74078 USA
关键词
Spoof surface plasmon polariton; waveguide component; corrugated metal surface;
D O I
10.1117/12.2295257
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
In the terahertz regime, due to perfect conductivity of most metals, it is hard to realize a strong confinement of Surface plasmon polaritons (SPPs) although a propagation loss could be sufficiently low. We experimentally demonstrated a structure with periodic pillars arranged on a thin metal surface that supports bound modes of spoof SPPs at terahertz (THz) frequencies. By using scanning near-field THz microscopy, the electric field distribution above the metal surface within a distance of 130 mu m was mapped. The results proved that this structure could guide spoof SPPs propagating along subwavelength waveguides, and at the same time reduce field expansion into free space. Further, for the development of integrated optical circuits, several components including straight waveguide, S-bend, Y-splitter and directional couplers were designed and characterized by the same method. We believe that the waveguide components proposed here will pave a new way for the development of flexible, wideband and compact photonic circuits operating at THz frequencies.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Surface Plasmon Polariton Waveguide by Bottom and Top of Graphene
    Zhu, Jun
    Xu, Zhengjie
    Xu, Wenju
    Fu, Deli
    Wei, Duqu
    PLASMONICS, 2018, 13 (05) : 1513 - 1522
  • [32] Analysis of waveguide structure for surface plasmon polariton interference
    王景全
    梁慧敏
    方亮
    李敏
    牛晓云
    杜惊雷
    Chinese Physics B, 2009, 18 (11) : 4870 - 4874
  • [33] Metal-Insulator-Metal Surface Plasmon Polariton Waveguide Filters With Cascaded Transverse Cavities
    Diniz, Lorena O.
    Nunes, Frederico D.
    Marega, Euclydes, Jr.
    Weiner, John
    Borges, Ben-Hur V.
    JOURNAL OF LIGHTWAVE TECHNOLOGY, 2011, 29 (05) : 714 - 720
  • [34] A surface-plasmon-polariton wavelength splitter based on a metal-insulator-metal waveguide
    Yu, Haibin
    Sun, Chen
    Tang, Hongyang
    Deng, Xiaoxu
    Li, Junhao
    PHOTONICS AND NANOSTRUCTURES-FUNDAMENTALS AND APPLICATIONS, 2014, 12 (05) : 460 - 465
  • [35] Characteristics of Symmetric Surface Plasmon Polariton Mode in Glass-Metal-Glass Waveguide
    Saber, Md. Ghulam
    Sagor, Rakibul Hasan
    PLASMONICS, 2013, 8 (04) : 1621 - 1625
  • [36] Erratum to: Characteristics of Symmetric Surface Plasmon Polariton Mode in Glass–Metal–Glass Waveguide
    Md. Ghulam Saber
    Rakibul Hasan Sagor
    Plasmonics, 2014, 9 : 201 - 201
  • [37] Research Progress of Surface Plasmon Polariton Metal-Insulator-Semiconductor Waveguide Lasers
    He Q.-Y.
    Li G.-H.
    Pan D.
    Ji T.
    Wang W.-Y.
    Cui Y.-X.
    Faguang Xuebao/Chinese Journal of Luminescence, 2022, 43 (12): : 1839 - 1854
  • [38] Ultrathin Au film on polymer surface for surface plasmon polariton waveguide application
    Liu, Tong
    Ji, Lanting
    He, Guobing
    Sun, Xiaoqiang
    Wang, Fei
    Zhang, Daming
    MODERN PHYSICS LETTERS B, 2017, 31 (32):
  • [39] Terahertz spoof surface plasmon polariton gradient index lens
    Gu, Shenghao
    Yuan, Xinyao
    Liu, Lei
    Sun, Mingming
    Zhang, Ying
    Xu, Quan
    Han, Jiaguang
    RESULTS IN PHYSICS, 2023, 47
  • [40] Terahertz surface plasmon polariton coupling on metallic grating structures
    O'Hara, JF
    Averitt, RD
    Taylor, AJ
    ULTRAFAST PHENOMENA XIV, 2005, 79 : 696 - 698