Equivariant Chern classes of singular algebraic varieties with group actions

被引:32
|
作者
Ohmoto, T [1 ]
机构
[1] Hokkaido Univ, Fac Sci, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
D O I
10.1017/S0305004105008820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define equivariant Chern-Schwartz-MacPherson classes of a possibly singular algebraic G-variety over the base field C, or more generally over a field of characteristic 0. In fact, we construct a natural transformation C-*(G) from the G-equivariant constructible function functor F-G to the G-equivariant homology functor H-*(G) or A(*)(G) (in the sense of Totaro-Edidin-Graham). This C-*(G) may be regarded as MacPherson's transformation for (certain) quotient stacks. The Verdier-Riemann-Roch formula takes a key role throughout.
引用
收藏
页码:115 / 134
页数:20
相关论文
共 50 条
  • [31] Equivariant Hirzebruch class for singular varieties
    Weber, Andrzej
    SELECTA MATHEMATICA-NEW SERIES, 2016, 22 (03): : 1413 - 1454
  • [32] Equivariant classes of matrix matroid varieties
    Feher, Laszlo M.
    Nemethi, Andras
    Rimanyi, Richard
    COMMENTARII MATHEMATICI HELVETICI, 2012, 87 (04) : 861 - 889
  • [33] Equivariant characteristic classes of singular hypersurfaces
    Grulha Jr, N. G.
    Monteiro, A.
    Morgado, M. F. Z.
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2025, 36 (03)
  • [34] VERSALITY OF ALGEBRAIC GROUP ACTIONS AND RATIONAL POINTS ON TWISTED VARIETIES
    Duncan, Alexander
    Reichstein, Zinovy
    JOURNAL OF ALGEBRAIC GEOMETRY, 2015, 24 (03) : 499 - 530
  • [35] CHERN CLASSES OF SCHUBERT CELLS AND VARIETIES
    Aluffi, Paolo
    Mihalcea, Leonardo Constantin
    JOURNAL OF ALGEBRAIC GEOMETRY, 2009, 18 (01) : 63 - 100
  • [36] On the Chern classes of singular complete intersections
    Callejas-Bedregal, Roberto
    Morgado, Michelle
    Seade, Jose
    JOURNAL OF TOPOLOGY, 2020, 13 (01) : 159 - 174
  • [37] SOME EQUIVARIANT K-THEORY OF AFFINE ALGEBRAIC GROUP-ACTIONS
    BASS, H
    HABOUSH, W
    COMMUNICATIONS IN ALGEBRA, 1987, 15 (1-2) : 181 - 217
  • [38] Chern Classes and Transversality for Singular Spaces
    Schuermann, Joerg
    SINGULARITIES IN GEOMETRY, TOPOLOGY, FOLIATIONS AND DYNAMICS: A CELEBRATION OF THE 60TH BIRTHDAY OF JOSE SEADE, 2017, : 207 - 231
  • [39] HIRZEBRUCH CLASSES AND MOTIVIC CHERN CLASSES FOR SINGULAR SPACES
    Brasselet, Jean-Paul
    Schuermann, Joerg
    Yokura, Shoji
    JOURNAL OF TOPOLOGY AND ANALYSIS, 2010, 2 (01) : 1 - 55
  • [40] Equivariant Chern Classes of Orientable Toric Origami Manifolds
    Xiong, Yueshan
    Zeng, Haozhi
    CHINESE ANNALS OF MATHEMATICS SERIES B, 2024, 45 (02) : 221 - 234