Equivariant Chern classes of singular algebraic varieties with group actions

被引:32
|
作者
Ohmoto, T [1 ]
机构
[1] Hokkaido Univ, Fac Sci, Dept Math, Sapporo, Hokkaido 0600810, Japan
关键词
D O I
10.1017/S0305004105008820
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We define equivariant Chern-Schwartz-MacPherson classes of a possibly singular algebraic G-variety over the base field C, or more generally over a field of characteristic 0. In fact, we construct a natural transformation C-*(G) from the G-equivariant constructible function functor F-G to the G-equivariant homology functor H-*(G) or A(*)(G) (in the sense of Totaro-Edidin-Graham). This C-*(G) may be regarded as MacPherson's transformation for (certain) quotient stacks. The Verdier-Riemann-Roch formula takes a key role throughout.
引用
收藏
页码:115 / 134
页数:20
相关论文
共 50 条