BOOK EMBEDDING OF TOROIDAL BIPARTITE GRAPHS

被引:4
|
作者
Nakamoto, Atsuhiro [1 ]
Ota, Katsuhiro [2 ]
Ozeki, Kenta [3 ]
机构
[1] Yokohama Natl Univ, Dept Math, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 223, Japan
[3] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
关键词
torus; even embedding; book embedding; quadrangulation; GENUS-G GRAPHS; PLANAR GRAPHS; PAGENUMBER; THICKNESS;
D O I
10.1137/100794651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Endo proved that every toroidal graph has a book embedding with at most seven pages. In this paper, we prove that every toroidal bipartite graph has a book embedding with at most five pages. In order to do so, we prove that every bipartite torus quadrangulation Q with n vertices admits two disjoint noncontractible simple closed curves cutting the torus into two annuli so that each of the two annuli contains a spanning connected subgraph of Q with exactly n edges satisfying a certain condition.
引用
收藏
页码:661 / 669
页数:9
相关论文
共 50 条
  • [41] Symmetric Bipartite Graphs and Graphs with Loops
    Cairns, Grant
    Mendan, Stacey
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2015, 17 (01): : 97 - 102
  • [42] On the decomposition of graphs into complete bipartite graphs
    Dong, Jinquan
    Liu, Yanpei
    GRAPHS AND COMBINATORICS, 2007, 23 (03) : 255 - 262
  • [43] On the Decomposition of Graphs into Complete Bipartite Graphs
    Jinquan Dong
    Yanpei Liu
    Graphs and Combinatorics, 2007, 23 : 255 - 262
  • [44] On the hyperbolicity of bipartite graphs and intersection graphs
    Coudert, David
    Ducoffe, Guillaume
    DISCRETE APPLIED MATHEMATICS, 2016, 214 : 187 - 195
  • [45] RENCONTRES GRAPHS - A FAMILY OF BIPARTITE GRAPHS
    DAS, SK
    DEO, N
    FIBONACCI QUARTERLY, 1987, 25 (03): : 250 - 262
  • [46] (Laplacian) Borderenergetic Graphs and Bipartite Graphs
    Deng, Bo
    Li, Xueliang
    Zhao, Haixing
    MATCH-COMMUNICATIONS IN MATHEMATICAL AND IN COMPUTER CHEMISTRY, 2019, 82 (02) : 481 - 489
  • [47] PROBLEM ON BIPARTITE GRAPHS
    VANLINT, JH
    AMERICAN MATHEMATICAL MONTHLY, 1975, 82 (01): : 55 - 56
  • [48] LOCALLY BIPARTITE GRAPHS
    STECHKIN, BS
    MATHEMATICAL NOTES, 1988, 44 (1-2) : 601 - 605
  • [49] On endotype of bipartite graphs
    Li, Weimin
    ARS COMBINATORIA, 2013, 108 : 415 - 424
  • [50] Choosability of bipartite graphs
    Hanson, D
    MacGillivray, G
    Toft, B
    ARS COMBINATORIA, 1996, 44 : 183 - 192