BOOK EMBEDDING OF TOROIDAL BIPARTITE GRAPHS

被引:4
|
作者
Nakamoto, Atsuhiro [1 ]
Ota, Katsuhiro [2 ]
Ozeki, Kenta [3 ]
机构
[1] Yokohama Natl Univ, Dept Math, Hodogaya Ku, Yokohama, Kanagawa 2408501, Japan
[2] Keio Univ, Dept Math, Kohoku Ku, Yokohama, Kanagawa 223, Japan
[3] Res Org Informat & Syst, Natl Inst Informat, Chiyoda Ku, Tokyo 1018430, Japan
关键词
torus; even embedding; book embedding; quadrangulation; GENUS-G GRAPHS; PLANAR GRAPHS; PAGENUMBER; THICKNESS;
D O I
10.1137/100794651
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Endo proved that every toroidal graph has a book embedding with at most seven pages. In this paper, we prove that every toroidal bipartite graph has a book embedding with at most five pages. In order to do so, we prove that every bipartite torus quadrangulation Q with n vertices admits two disjoint noncontractible simple closed curves cutting the torus into two annuli so that each of the two annuli contains a spanning connected subgraph of Q with exactly n edges satisfying a certain condition.
引用
收藏
页码:661 / 669
页数:9
相关论文
共 50 条
  • [21] Book embedding of locally planar graphs on orientable surfaces
    Nakamoto, Atsuhiro
    Nozawa, Takayuki
    DISCRETE MATHEMATICS, 2016, 339 (11) : 2672 - 2679
  • [22] On Topological Book Embedding for k-plane Graphs
    Kaufmann, Michael
    Kuckuk, Axel
    GRAPH DRAWING AND NETWORK VISUALIZATION, 2019, 11904 : 596 - 598
  • [23] Bipartite graphs as polynomials and polynomials as bipartite graphs
    Grinblat, Andrey
    Lopatkin, Viktor
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2021, 20 (05)
  • [24] Convex bipartite graphs and bipartite circle graphs
    Kizu, T
    Haruta, Y
    Araki, T
    Kashiwabara, T
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 1998, E81A (05) : 789 - 795
  • [25] Packing bipartite graphs with covers of complete bipartite graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    DISCRETE APPLIED MATHEMATICS, 2014, 168 : 40 - 50
  • [26] GraPacking Bipartite Graphs with Covers of Complete Bipartite Graphs
    Chalopin, Jeremie
    Paulusma, Daniel
    ALGORITHMS AND COMPLEXITY, PROCEEDINGS, 2010, 6078 : 276 - +
  • [27] BIPARTITE GRAPHS
    JAGERS, AA
    AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (09): : 748 - 748
  • [28] MATRIX GRAPHS AND BIPARTITE GRAPHS
    CHEN, WK
    IEEE TRANSACTIONS ON CIRCUIT THEORY, 1965, CT12 (02): : 268 - &
  • [29] Bipartite graphs that are not circle graphs
    Bouchet, A
    ANNALES DE L INSTITUT FOURIER, 1999, 49 (03) : 809 - +
  • [30] On line graphs of bipartite graphs
    Staton, W
    UTILITAS MATHEMATICA, 1998, 53 : 183 - 187