Mapped WENO schemes based on a new smoothness indicator for Hamilton-Jacobi equations

被引:9
|
作者
Ha, Youngsoo [2 ]
Kim, Chang Ho [3 ]
Lee, Yeon Ju [4 ]
Yoon, Jungho [1 ]
机构
[1] Ewha W Univ, Dept Math, Seoul 120750, South Korea
[2] Natl Inst Math Sci, Taejon 305811, South Korea
[3] Konkuk Univ, Dept Comp Engn, Chungju 380701, South Korea
[4] Ewha W Univ, Inst Math Sci, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
WENO schemes; Mapped WENO schemes; Smoothness indicators; Hamilton-Jacobi equations; Level set; ESSENTIALLY NONOSCILLATORY SCHEMES; SEMIDISCRETE CENTRAL SCHEMES; SHOCK-CAPTURING SCHEMES; WEIGHTED ENO SCHEMES; VISCOSITY SOLUTIONS; EFFICIENT IMPLEMENTATION; CONSERVATION-LAWS; SYSTEMS;
D O I
10.1016/j.jmaa.2012.04.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an improved version of mapped weighted essentially non-oscillatory (WENO) schemes for solving Hamilton-Jacobi equations. To this end, we first discuss new smoothness indicators for WENO construction. Then the new smoothness indicators are combined with the mapping function developed by Henrick et al. (2005) [31]. The proposed scheme yields fifth-order accuracy in smooth regions and sharply resolve discontinuities in the derivatives. Numerical experiments are provided to demonstrate the performance of the proposed schemes on a variety of one-dimensional and two-dimensional problems. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:670 / 682
页数:13
相关论文
共 50 条
  • [31] Convex ENO schemes for hamilton-jacobi equations
    Lin, Chi-Tien
    Liu, Xu-Dong
    JOURNAL OF SCIENTIFIC COMPUTING, 2007, 31 (1-2) : 195 - 211
  • [32] Weighted ENO schemes for Hamilton-Jacobi equations
    Jiang, GS
    Peng, DP
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (06): : 2126 - 2143
  • [33] High order finite difference hermite WENO schemes for the Hamilton-Jacobi equations on unstructured meshes
    Zheng, Feng
    Shu, Chi-Wang
    Qiu, Jianxian
    COMPUTERS & FLUIDS, 2019, 183 (53-65) : 53 - 65
  • [34] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    APPLICATIONS OF MATHEMATICS, 2023, 68 (05) : 661 - 684
  • [35] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Wonho Han
    Kwangil Kim
    Unhyok Hong
    Applications of Mathematics, 2023, 68 : 661 - 684
  • [36] Convergence of a proposed adaptive WENO scheme for Hamilton-Jacobi equations
    Han, Wonho
    Kim, Kwangil
    Hong, Unhyok
    Applications of Mathematics, 2023, 68 (05): : 661 - 684
  • [37] Finite Volume Hermite WENO Schemes for Solving the Hamilton-Jacobi Equation
    Zhu, Jun
    Qiu, Jianxian
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2014, 15 (04) : 959 - 980
  • [38] A fifth-order WENO scheme with arc-length smoothness indicators based on exponential polynomials for Hamilton-Jacobi equations
    Abedian, Rooholah
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2025,
  • [39] A new third-order EXP-WENO scheme for Hamilton-Jacobi equations
    Abedian, Rooholah
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2024, 35 (06):
  • [40] Dimension-by-dimension moment-based central Hermite WENO schemes for directly solving Hamilton-Jacobi equations
    Zhanjing Tao
    Jianxian Qiu
    Advances in Computational Mathematics, 2017, 43 : 1023 - 1058