Mapped WENO schemes based on a new smoothness indicator for Hamilton-Jacobi equations

被引:9
|
作者
Ha, Youngsoo [2 ]
Kim, Chang Ho [3 ]
Lee, Yeon Ju [4 ]
Yoon, Jungho [1 ]
机构
[1] Ewha W Univ, Dept Math, Seoul 120750, South Korea
[2] Natl Inst Math Sci, Taejon 305811, South Korea
[3] Konkuk Univ, Dept Comp Engn, Chungju 380701, South Korea
[4] Ewha W Univ, Inst Math Sci, Seoul 120750, South Korea
基金
新加坡国家研究基金会;
关键词
WENO schemes; Mapped WENO schemes; Smoothness indicators; Hamilton-Jacobi equations; Level set; ESSENTIALLY NONOSCILLATORY SCHEMES; SEMIDISCRETE CENTRAL SCHEMES; SHOCK-CAPTURING SCHEMES; WEIGHTED ENO SCHEMES; VISCOSITY SOLUTIONS; EFFICIENT IMPLEMENTATION; CONSERVATION-LAWS; SYSTEMS;
D O I
10.1016/j.jmaa.2012.04.040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce an improved version of mapped weighted essentially non-oscillatory (WENO) schemes for solving Hamilton-Jacobi equations. To this end, we first discuss new smoothness indicators for WENO construction. Then the new smoothness indicators are combined with the mapping function developed by Henrick et al. (2005) [31]. The proposed scheme yields fifth-order accuracy in smooth regions and sharply resolve discontinuities in the derivatives. Numerical experiments are provided to demonstrate the performance of the proposed schemes on a variety of one-dimensional and two-dimensional problems. (C) 2012 Elsevier Inc. All rights reserved.
引用
收藏
页码:670 / 682
页数:13
相关论文
共 50 条
  • [21] Arc Length-Based WENO Scheme for Hamilton-Jacobi Equations
    Samala, Rathan
    Biswas, Biswarup
    COMMUNICATIONS ON APPLIED MATHEMATICS AND COMPUTATION, 2021, 3 (03) : 481 - 496
  • [22] New Finite Difference Hermite WENO Schemes for Hamilton–Jacobi Equations
    Jun Zhu
    Feng Zheng
    Jianxian Qiu
    Journal of Scientific Computing, 2020, 83
  • [23] A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations
    College of Science, Nanjing University of Aeronautics and Astronautics, Nanjing
    Jiangsu
    210016, China
    不详
    Fujian
    361005, China
    Numer Methods Partial Differential Equations, 4 (1095-1113):
  • [24] A new fifth order finite difference WENO scheme for Hamilton-Jacobi equations
    Zhu, Jun
    Qiu, Jianxian
    NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2017, 33 (04) : 1095 - 1113
  • [25] Finite volume Hermite WENO schemes for solving the Hamilton-Jacobi equations II: Unstructured meshes
    Zhu, Jun
    Qiu, Jianxian
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2014, 68 (10) : 1137 - 1150
  • [26] ALTERNATING EVOLUTION SCHEMES FOR HAMILTON-JACOBI EQUATIONS
    Liu, Hailiang
    Pollack, Michael
    Saran, Haseena
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : A122 - A149
  • [27] HERMITE WENO SCHEMES WITH LAX-WENDROFF TYPE TIME DISCRETIZATIONS FOR HAMILTON-JACOBI EQUATIONS
    Jianxian Qiu (Department of Mathematics
    Journal of Computational Mathematics, 2007, (02) : 131 - 144
  • [28] Hermite WENO schemes with Lax-Wendroff type time discretizations for Hamilton-Jacobi equations
    Qiu, Jianxian
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2007, 25 (02) : 131 - 144
  • [29] Central schemes for multidimensional Hamilton-Jacobi equations
    Bryson, S
    Levy, D
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2003, 25 (03): : 767 - 791
  • [30] Finite volume schemes for Hamilton-Jacobi equations
    Kossioris, G
    Makridakis, C
    Souganidis, PE
    NUMERISCHE MATHEMATIK, 1999, 83 (03) : 427 - 442