Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation

被引:75
|
作者
Kuo, Frances Y. [1 ]
Nuyens, Dirk [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium
基金
澳大利亚研究理事会;
关键词
Quasi-Monte Carlo methods; Infinite-dimensional integration; Partial differential equations with random coefficients; Uniform; Lognormal; Single-level; Multi-level; First order; Higher order; Deterministic; Randomized; PARTIAL-DIFFERENTIAL-EQUATIONS; BY-COMPONENT CONSTRUCTION; STOCHASTIC COLLOCATION METHOD; PETROV-GALERKIN DISCRETIZATION; HIGH-DIMENSIONAL INTEGRATION; POLYNOMIAL LATTICE RULES; FINITE-ELEMENT METHODS; MULTIVARIATE INTEGRATION; CONSERVATIVE TRANSPORT; FLOW;
D O I
10.1007/s10208-016-9329-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article provides a survey of recent research efforts on the application of quasi-Monte Carlo (QMC) methods to elliptic partial differential equations (PDEs) with random diffusion coefficients. It considers and contrasts the uniform case versus the lognormal case, single-level algorithms versus multi-level algorithms, first-order QMC rules versus higher-order QMC rules, and deterministic QMC methods versus randomized QMC methods. It gives a summary of the error analysis and proof techniques in a unified view, and provides a practical guide to the software for constructing and generating QMC points tailored to the PDE problems. The analysis for the uniform case can be generalized to cover a range of affine parametric operator equations.
引用
收藏
页码:1631 / 1696
页数:66
相关论文
共 50 条
  • [1] Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation
    Frances Y. Kuo
    Dirk Nuyens
    [J]. Foundations of Computational Mathematics, 2016, 16 : 1631 - 1696
  • [2] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [3] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [4] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    [J]. Numerische Mathematik, 2015, 131 : 329 - 368
  • [5] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    [J]. FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 411 - 449
  • [6] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Frances Y. Kuo
    Christoph Schwab
    Ian H. Sloan
    [J]. Foundations of Computational Mathematics, 2015, 15 : 411 - 449
  • [7] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    [J]. Numerische Mathematik, 2019, 142 : 863 - 915
  • [8] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    [J]. NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915
  • [9] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    A. L. Teckentrup
    R. Scheichl
    M. B. Giles
    E. Ullmann
    [J]. Numerische Mathematik, 2013, 125 : 569 - 600
  • [10] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    [J]. NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600