Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation

被引:82
|
作者
Kuo, Frances Y. [1 ]
Nuyens, Dirk [2 ]
机构
[1] Univ New South Wales, Sch Math & Stat, Sydney, NSW 2052, Australia
[2] Katholieke Univ Leuven, Dept Comp Sci, Celestijnenlaan 200A, B-3001 Leuven, Belgium
基金
澳大利亚研究理事会;
关键词
Quasi-Monte Carlo methods; Infinite-dimensional integration; Partial differential equations with random coefficients; Uniform; Lognormal; Single-level; Multi-level; First order; Higher order; Deterministic; Randomized; PARTIAL-DIFFERENTIAL-EQUATIONS; BY-COMPONENT CONSTRUCTION; STOCHASTIC COLLOCATION METHOD; PETROV-GALERKIN DISCRETIZATION; HIGH-DIMENSIONAL INTEGRATION; POLYNOMIAL LATTICE RULES; FINITE-ELEMENT METHODS; MULTIVARIATE INTEGRATION; CONSERVATIVE TRANSPORT; FLOW;
D O I
10.1007/s10208-016-9329-5
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This article provides a survey of recent research efforts on the application of quasi-Monte Carlo (QMC) methods to elliptic partial differential equations (PDEs) with random diffusion coefficients. It considers and contrasts the uniform case versus the lognormal case, single-level algorithms versus multi-level algorithms, first-order QMC rules versus higher-order QMC rules, and deterministic QMC methods versus randomized QMC methods. It gives a summary of the error analysis and proof techniques in a unified view, and provides a practical guide to the software for constructing and generating QMC points tailored to the PDE problems. The analysis for the uniform case can be generalized to cover a range of affine parametric operator equations.
引用
收藏
页码:1631 / 1696
页数:66
相关论文
共 50 条
  • [1] Application of Quasi-Monte Carlo Methods to Elliptic PDEs with Random Diffusion Coefficients: A Survey of Analysis and Implementation
    Frances Y. Kuo
    Dirk Nuyens
    Foundations of Computational Mathematics, 2016, 16 : 1631 - 1696
  • [2] Quasi-Monte Carlo methods for elliptic PDEs with random coefficients and applications
    Graham, I. G.
    Kuo, F. Y.
    Nuyens, D.
    Scheichl, R.
    Sloan, I. H.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2011, 230 (10) : 3668 - 3694
  • [3] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    Graham, I. G.
    Kuo, F. Y.
    Nichols, J. A.
    Scheichl, R.
    Schwab, Ch.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2015, 131 (02) : 329 - 368
  • [4] Quasi-Monte Carlo finite element methods for elliptic PDEs with lognormal random coefficients
    I. G. Graham
    F. Y. Kuo
    J. A. Nichols
    R. Scheichl
    Ch. Schwab
    I. H. Sloan
    Numerische Mathematik, 2015, 131 : 329 - 368
  • [5] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Kuo, Frances Y.
    Schwab, Christoph
    Sloan, Ian H.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2015, 15 (02) : 411 - 449
  • [6] Multi-level Quasi-Monte Carlo Finite Element Methods for a Class of Elliptic PDEs with Random Coefficients
    Frances Y. Kuo
    Christoph Schwab
    Ian H. Sloan
    Foundations of Computational Mathematics, 2015, 15 : 411 - 449
  • [7] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    A. D. Gilbert
    I. G. Graham
    F. Y. Kuo
    R. Scheichl
    I. H. Sloan
    Numerische Mathematik, 2019, 142 : 863 - 915
  • [8] Analysis of quasi-Monte Carlo methods for elliptic eigenvalue problems with stochastic coefficients
    Gilbert, A. D.
    Graham, I. G.
    Kuo, F. Y.
    Scheichl, R.
    Sloan, I. H.
    NUMERISCHE MATHEMATIK, 2019, 142 (04) : 863 - 915
  • [9] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    A. L. Teckentrup
    R. Scheichl
    M. B. Giles
    E. Ullmann
    Numerische Mathematik, 2013, 125 : 569 - 600
  • [10] Further analysis of multilevel Monte Carlo methods for elliptic PDEs with random coefficients
    Teckentrup, A. L.
    Scheichl, R.
    Giles, M. B.
    Ullmann, E.
    NUMERISCHE MATHEMATIK, 2013, 125 (03) : 569 - 600