Green function for hyperbolic media

被引:61
|
作者
Potemkin, Andrey S. [1 ]
Poddubny, Alexander N. [1 ,2 ]
Belov, Pavel A. [1 ,3 ]
Kivshar, Yuri S. [1 ,4 ]
机构
[1] Natl Univ Informat Technol Mech & Opt ITMO, Dept Photon & Optoinformat, St Petersburg 197101, Russia
[2] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[4] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 02期
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
DELTA-FUNCTION IDENTITIES; TE TM DECOMPOSITION; ELECTROMAGNETIC-FIELD; NEGATIVE REFRACTION; METAMATERIALS; DIPOLE;
D O I
10.1103/PhysRevA.86.023848
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We revisit the problem of the electromagnetic Green function for homogeneous hyperbolic media, where longitudinal and transverse components of the dielectric permittivity tensor have different signs. We analyze the dipole emission patterns for both dipole orientations with respect to the symmetry axis and for different signs of dielectric constants, and show that the emission pattern is highly anisotropic and has a characteristic crosslike shape: the waves are propagating within a certain cone and are evanescent outside this cone. We demonstrate the coexistence of the conelike pattern due to emission of the extraordinary TM-polarized waves and elliptical pattern due to emission of ordinary TE-polarized waves. We find a singular complex term in the Green function, proportional to the delta function and governing the photonic density of states and Purcell effect in hyperbolic media.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] An alternative way of calculating the superlattice Green function for discrete media
    Vlaev, SJ
    Rodríguez-Vargas, I
    Gaggero-Sager, LM
    Velasco, VR
    SURFACE SCIENCE, 2004, 554 (2-3) : 245 - 252
  • [42] Exact property of the nonequilibrium photon Green function for bounded media
    Henneberger, K.
    Richter, F.
    PHYSICAL REVIEW A, 2009, 80 (01):
  • [43] Dyadic Green's function representation in electrically gyrotropic media
    Weiglhofer, Werner S.
    AEU. Archiv fur Elektronik und Ubertragungstechnik, 1993, 47 (03): : 125 - 130
  • [44] Green function method for nonlinear elastic waves in layered media
    Lobo, AE
    Tsoy, EN
    de Sterke, CM
    JOURNAL OF APPLIED PHYSICS, 2001, 90 (08) : 3762 - 3770
  • [45] Spacetime Green function and short pulse propagation in different media
    Gutman, AL
    ULTRA-WIDEBAND SHORT-PULSE ELECTROMAGNETICS 4, 1999, : 301 - 311
  • [46] Electromagnetic dyadic Green's function in cylindrically multilayered media
    Xiang, ZG
    Lu, YL
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 1996, 44 (04) : 614 - 621
  • [47] The Green function of two-phase media BISQ model
    Shen, YQ
    Yang, DH
    CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2004, 47 (01): : 101 - 105
  • [48] Green’s function for the anisotropic hyperbolic heat equation in bounded spatial and temporal domains
    J. A. López Molina
    Bollettino dell'Unione Matematica Italiana, 2021, 14 : 447 - 482
  • [49] Waves in asymmetric hyperbolic media
    Hashemi, S. M.
    Nefedov, I. S.
    Soleimani, M.
    PHOTONICS LETTERS OF POLAND, 2013, 5 (02) : 72 - 74
  • [50] Holder continuity of hyperbolic Poisson integral and hyperbolic Green integral
    Ma, Lihua
    MONATSHEFTE FUR MATHEMATIK, 2022, 199 (03): : 595 - 610