Green function for hyperbolic media

被引:61
|
作者
Potemkin, Andrey S. [1 ]
Poddubny, Alexander N. [1 ,2 ]
Belov, Pavel A. [1 ,3 ]
Kivshar, Yuri S. [1 ,4 ]
机构
[1] Natl Univ Informat Technol Mech & Opt ITMO, Dept Photon & Optoinformat, St Petersburg 197101, Russia
[2] Russian Acad Sci, AF Ioffe Phys Tech Inst, St Petersburg 194021, Russia
[3] Queen Mary Univ London, Sch Elect Engn & Comp Sci, London E1 4NS, England
[4] Australian Natl Univ, Res Sch Phys & Engn, Nonlinear Phys Ctr, Canberra, ACT 0200, Australia
来源
PHYSICAL REVIEW A | 2012年 / 86卷 / 02期
基金
澳大利亚研究理事会; 英国工程与自然科学研究理事会; 俄罗斯基础研究基金会;
关键词
DELTA-FUNCTION IDENTITIES; TE TM DECOMPOSITION; ELECTROMAGNETIC-FIELD; NEGATIVE REFRACTION; METAMATERIALS; DIPOLE;
D O I
10.1103/PhysRevA.86.023848
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We revisit the problem of the electromagnetic Green function for homogeneous hyperbolic media, where longitudinal and transverse components of the dielectric permittivity tensor have different signs. We analyze the dipole emission patterns for both dipole orientations with respect to the symmetry axis and for different signs of dielectric constants, and show that the emission pattern is highly anisotropic and has a characteristic crosslike shape: the waves are propagating within a certain cone and are evanescent outside this cone. We demonstrate the coexistence of the conelike pattern due to emission of the extraordinary TM-polarized waves and elliptical pattern due to emission of ordinary TE-polarized waves. We find a singular complex term in the Green function, proportional to the delta function and governing the photonic density of states and Purcell effect in hyperbolic media.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Singularities of the Green function for non-strictly hyperbolic operators.
    Borovikov, VA
    FIFTH INTERNATIONAL CONFERENCE ON MATHEMATICAL AND NUMERICAL ASPECTS OF WAVE PROPAGATION, 2000, : 455 - 459
  • [22] A Green function approach to surface optics in anisotropic media
    Saarinen, Jarkko J.
    Sipe, J. E.
    JOURNAL OF MODERN OPTICS, 2008, 55 (01) : 13 - 32
  • [23] Dyadic Green's function in gyrotropic bianisotropic media
    Li, LW
    Leong, MS
    Kong, JA
    APMC 2001: ASIA-PACIFIC MICROWAVE CONFERENCE, VOLS 1-3, PROCEEDINGS, 2001, : 456 - 459
  • [24] On Evaluation of the Green Function for Periodic Structures in Layered Media
    Wang, Daoxiang
    Yung, Edward K. N.
    Chen, R. S.
    Ding, D. Z.
    Tang, W. C.
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2004, 3 : 133 - 136
  • [25] Green Scalar Function Method for Analyzing Dielectric Media
    Bravo, J. C.
    Colomina-Martinez, J.
    Sirvent-Verdu, J. J.
    Mena, E. J.
    Alvarez, M. L.
    Frances, J.
    Neipp, C.
    Gallego, Sergi
    APPLIED SCIENCES-BASEL, 2024, 14 (17):
  • [26] Evaluation of Green's function integrals in conducting media
    Chakraborty, S
    Jandhyala, V
    IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2004, 52 (12) : 3357 - 3363
  • [27] On Green’s function of Cauchy–Dirichlet problem for hyperbolic equation in a quarter plane
    Makhmud Sadybekov
    Bauyrzhan Derbissaly
    Boundary Value Problems, 2021
  • [28] Green-Hyperbolic Operators on Globally Hyperbolic Spacetimes
    Christian Bär
    Communications in Mathematical Physics, 2015, 333 : 1585 - 1615
  • [29] Green-Hyperbolic Operators on Globally Hyperbolic Spacetimes
    Baer, Christian
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2015, 333 (03) : 1585 - 1615
  • [30] Green's function for the anisotropic hyperbolic heat equation in bounded spatial and temporal domains
    Lopez Molina, J. A.
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2021, 14 (03): : 447 - 482